Adaptive Equalization using Controlled Equal Gain Combining for Uplink/Downlink MC-CDMA Systems

Miloud Frikel, Boubekeur Targui, François Hamon and Mohammed M’SAAD

Abstract—In this paper we propose an enhanced equalization technique for multi-carrier code division multiple access (MC-CDMA). This method is based on the control of Equal Gain Combining (EGC) technique. Indeed, we introduce a new level changer to the EGC equalizer in order to adapt the equalization parameters to the channel coefficients. The optimal equalization level is, first, determined by channel training. The new approach reduces drastically the multi-user interferences caused by interferes, without increasing the noise power. To compare the performances of the proposed equalizer, the theoretical analysis and numerical performances are given.

Keywords—MC-CDMA, Equalization, EGC, Single User Detection.

I. INTRODUCTION

RECENTLY a new CDMA system based on the combination of CDMA and OFDM has been proposed [1], [2] which is potentially robust to channel frequency selectivity. Furthermore, it has a good spectral efficiency, multiple access capability and it’s easy to be implemented with FFT. For the scheme based on a combination of CDMA and multi-carrier technique spreads the original data stream over different subcarriers using a spreading code in the frequency domain [3]. Indeed, in the past decade, there is a growing need for technological innovations to satisfy the increase demand for personal wireless radio communications. This technology must be able to allow users to efficiently share common resources, whether it involves the frequency spectrum and computational load. That why the MC-CDMA [3], the one of representative of the multi-carrier techniques, has been considered as a promising system for the next generation of wireless communication. One large advantage of this technology is its robustness in case of multi-path propagation, and it’s capable to combat frequency selective fading, flexible to generate different data rates and provides bandwidth efficiency.

The principles of MC-CDMA [3] is that a single data symbol is transmitted on multiple narrow band sub-carriers. Indeed, in MC-CDMA systems, spreading codes are applied in the frequency domain and transmitted over independent sub-carriers. However, multicarrier systems are very sensitive to synchronization errors such as carrier frequency offset and carriers. Indeed, in MC-CDMA systems, spreading codes are applied in the frequency domain [3]. That why the MC-CDMA is an alternative to the others multiplexing techniques to increase the reuse frequency factor and eventually the spectral efficiency of communication systems. A different approach to further increase the system capacity without allocating additional frequency spectrum is the use of code multiplexing.

The MC-CDMA modulator spreads the data of each user in frequency domain. In addition, precisely, the complex symbol g_j of each user j is, first, multiply by each chips $c_{j,k}$ of spreading code SC_j, and then apply to the modulator of multi-carriers. Each sub-carrier transmits an element of information multiply by a code chip of that sub-carrier.

We consider, for example, the case where the length L_c of spreading code is equal to the number N of sub-carriers. The optimum space between two adjacent sub-carriers is equal to inverse of duration T_c of chip of spreading code in order to guaranty the orthogonality between sub-carriers. The occupied spectral band is, then equal: $B = \frac{(Np+1)}{T_c}$.

The MC-CDMA signal is:

$$s(t) = \frac{g_j}{\sqrt{N}} \sum_{k=0}^{N-1} c_{j,k} e^{2 \pi f_k t}$$

(1)
We consider the channel is invariant in time and he is characterized by \(P \) paths of magnitudes \(\beta_p \) and phase \(\theta_p \). The impulse response is given by:

\[
h(\tau) = \sum_{p=0}^{P-1} \beta_p e^{j\theta_p} \delta(\tau - \tau_p)
\]

The relationship between the emitted signal \(s(t) \) and the received signal \(r(t) \) is given by:

\[
r(t) = h(t) * s(t) + n(t)
\]

where \(n(t) \) is the additive white Gaussian noise and \(P \) is the number of paths.

In a system of \(M \) users, the emitted signal through a channel is given by:

\[
s(t) = \sum_{m=0}^{M-1} \sum_{k=0}^{N-1} g_{m,k} e^{2j\pi ft}.
\]

The received signal after passing through the channel is:

\[
r(t) = \sum_{m=0}^{M-1} \sum_{i=0}^{N-1} h_{m,i} c_m[i] a_m[k] e^{2j\pi ft} + n(t)
\]

where the effects of the channel have been included in \(h_{m,i} \) and \(\theta_{m,i} \), and \(n(t) \) is additive white Gaussian noise (AWGN) with a one-sided power spectral density of \(N_0 \).

Where it has been assumed that \(m = 0 \) corresponds to the desired signal. With this model, there are \(N \) matched filters with one matched filter for each subcarrier. The output of each filter contributes one component to the decision variable, \(\hat{\theta}_i \). Each matched filter consists of an oscillator with a frequency corresponding to the frequency of the particular BPSK modulated subcarrier that is of interest and an integrator. In addition, a phase offset equal to the phase distortion introduced by the channel, \(\theta_{m,i} \), is included in the oscillator to synchronize the receiver to the desired signal in time. To extract the desired signal’s component, the orthogonality of the codes is used. For the \(j^{th} \) subcarrier of the desired signal, the corresponding chip, \(C_0[i] \), from the desired user’s code is multiplied with it to undo the code. If the signal is undistorted by the channel, the interference terms will cancel out in the decision variable due to the orthogonality of the codes. As the channel will distort the subcarrier components, an equalization gain, \(g_{0,i} \), may be included for each matched filter branch of the receiver.

Applying the receiver model to the received signal given in equation (4) yields the following decision variable for the \(k^{th} \) data symbol assuming the users are synchronized in time:

\[
\hat{\theta}_0 = \sum_{m=0}^{M-1} \sum_{i=0}^{N-1} h_{m,i} c_m[i] a_m[k] e^{2j\pi ft} + \sum_{i=0}^{N-1} n(t) T_b
\]

where \(\hat{\theta}_0 \) denotes the receiver’s estimation of the phase at the \(i^{th} \) subcarrier of the desired signal and the corresponding AWGN term, \(\eta \) is given as:

\[
\eta = \sum_{i=0}^{N-1} \int_{kT_b}^{(k+1)T_b} n(t) \frac{2}{T_b} g_{0,i} e^{2j\pi ft} + \sum_{i=0}^{N-1} n(t) T_b
\]

Assuming perfect phase correction, \(\hat{\theta}_{0,i} = \hat{\theta}_{0,i} \), the decision variable reduces to:

\[
\hat{\theta}_0 = a_0[k] \int_{0}^{\tau_{m,i}} h_{m,i} g_{0,i} e^{2j\pi ft} + \sum_{m=0}^{M-1} \sum_{i=0}^{N-1} a_m[k] C_m[i] C_0[i] e^{2j\pi ft} + \sum_{i=0}^{N-1} n(t) T_b
\]

where \(\hat{\theta}_0 \) is the decision variable’s component, the second corresponds to the interference and the last corresponds to a noise term.

\[
\hat{\theta}_0 = \xi_{inf} + \beta_{int} + \eta
\]

where, \(\xi_{inf} \) and \(\beta_{int} \) are the terms of informations and interferences, respectively, defined by:

\[
\xi_{inf} = a_0[k] \sum_{i=0}^{N-1} h_{0,i} g_{0,i}
\]

\[
\beta_{int} = \sum_{m=0}^{M-1} \sum_{i=0}^{N-1} a_m[k] C_m[i] C_0[i] h_{m,i} g_{0,i} e^{2j\pi ft}
\]

The noise can be approximated by a zero-mean Gaussian random variable with the following variance (see the Appendix I):

\[
\sigma^2 = N_0 \frac{T_b}{T_b} E[g_{0,i}^2]
\]
III. CLASSICAL EGC EQUALIZATION

The goal of the equalization techniques should be to reduce the effect of the fading and the interference while not enhancing the effect of the noise on the decision of what data symbol was transmitted. Whenever there is a diversity scheme involved whether it may involve receiving multiple copies of a signal from time, frequency or antenna diversity, the field of classical diversity theory can be applied. These equalization techniques may be desirable for their simplicity as they involve simple multiplications with each copy of the signal. However, they may not be optimal in a channel with interference in the sense of minimizing the error under some criterion.

It should be noted that while there are some decision making techniques, such as Viterbi decoding and Wiener filtering, that are optimal in the sense that they minimize the mean-squared error, the actual implementation of these methods may be prohibitive complex for a channel equivalent to the one that is being analyzed in this paper. By assuming that the fading at the N subcarriers are independent, it is assumed that there are N degrees of freedom in one form or another. It could mean that there are N taps in the impulse response of the channel and a very large number of states in a Viterbi decoder for large N. It could also mean there are N taps in a LMS implementation of a Wiener filter.

In the analysis, the EGC equalization technique will be evaluated. This technique may be associated with classical diversity theory as it involved multiplying each copy of the signal by some gain factor. As it can be seen from equation (7), the EGC equalization technique will affect the distribution of the noise component differently.

With EGC, the gain factor of the \(i^{th} \) subcarrier is chosen to be:

\[
g_{0,i} = \left[\frac{h_{0,i}^6}{\left| h_{0,i} \right|} \right]
\]

This technique does not attempt to equalize the effect of the channel distortion in any way. This technique may be desirable for its simplicity as the receiver does not require the estimation of the channel’s transfer function. Using this scheme, the decision variable of equation (8) is given as

\[
\tilde{v}_0 = \xi_{\text{in.f}}^{\text{egc}} + \beta_{\text{int}}^{\text{egc}} + \eta^{\text{egc}}
\]

with \(\xi_{\text{in.f}}^{\text{egc}} = a_0[k] \sum_{i=0}^{N-1} h_{0,i} \) and \(\beta_{\text{int}}^{\text{egc}} = \sum_{m=1}^{M-1} a_m[k] \sum_{i=0}^{N-1} C_m[i] C_0[i] |h_{m,i}| \cos(\theta_{m,i}) \).

where the noise can be approximated by a zero-mean Gaussian random with a variance of: \(\sigma^2_\eta = N \frac{N_0}{T_b} \) (variance of noise).

IV. CONTROLLED EGC : C-EGC

For the controlled EGC (C-EGC) equalizer, the gain factor is given by,

\[
g_{0,i} = \alpha_{0,i} \left[\frac{h_{0,i}^6}{\left| h_{0,i} \right|} \right]
\]

where, \(\alpha_{0,i} = q^{i+1}, \ i = 0...N - 1 \), with q is a deterministic controlled gain of the equalization chosen in function of the desired performance (BER).

In this case, the decision variable is given by,

\[
\tilde{v}_0 = \xi_{\text{in.f}}^{\text{egc}} + \beta_{\text{int}}^{\text{egc}} + \eta^{\text{egc}}
\]

with \(\xi_{\text{in.f}}^{\text{egc}} = a_0[k] \sum_{i=0}^{N-1} h_{0,i} \alpha_{0,i} \), and \(\beta_{\text{int}}^{\text{egc}} = \sum_{m=1}^{M-1} a_m[k] \sum_{i=0}^{N-1} C_m[i] C_0[i] |h_{m,i}| \alpha_{0,i} \cos(\theta_{m,i}) \).

and \(\sigma^2_\eta = N \frac{N_0}{T_b} \sum_{i=0}^{N-1} \alpha^2_{0,i} \), and \(\sigma^2_{\beta_{\text{int}}} = \frac{(M - 1) \overline{P}_m}{N} \sum_{i=0}^{N-1} \beta^2_{0,i} \).

where \(\overline{P}_m \) is the power of each user.

(see the Appendices II and III for the proofs of those formulas).

V. PERFORMANCE ANALYSIS: UPLINK CASE

As mentioned above, there are several combining schemes for a MC-CDMA system, we analyze, here, the BER of the system with the following two combining schemes.

A. classical EGC

We have calculated the theoretical Bit Error Rate (BER) for the classical equalizer EGC, and for the new developed equalizers.

Below, some the theoretical performance results obtained. As \(\sigma^2_{\beta_{\text{int}}} = (M - 1) \overline{P}_m \) (Variance of interferences) and \(\sigma^2_\eta = N \times \frac{N_0}{T_b} \) (variance of noise).

We have the general form of BER [3] :

\[
\text{BER} = \frac{1}{2} \text{erfc} \left(\sqrt{\frac{0.5 \left(\sum_{i=0}^{N-1} h_{0,i} g_{0,i} \right)^2}{\sigma^2_{\beta_{\text{int}}} + \sigma^2_\eta}} \right)
\]

In the case of EGC we have :

\[
\text{BER}_{\text{EGC}} = \frac{1}{2} \text{erfc} \left(\sqrt{\frac{1}{(M - 1) \overline{P}_m + N \times \frac{N_0}{T_b}}} \right)
\]

The objective is to find an approximation of \(h_0 = \sum_{i=0}^{N-1} h_{0,i} \).

1) Law of Large Numbers (LLN) approximation: In the limiting case of a large number of subcarriers, \(\sum_{i=0}^{N-1} h_{0,i} \) can be approximated by the LLN to be the constant \(N \overline{E}[h_{0,i}] \). The advantage of using the LLN is that it requires low computational complexity. Using the LLN simplifies the expression for the probability of error to [3]

\[
N \text{ is large } \Rightarrow \gamma_0 = \sum_{i=0}^{N-1} h_{0,i} \simeq N \times \overline{E}[h_{0,i}].
\]
\[BER_{\text{LLN}}^{\text{EGC}} = \frac{1}{2} e^{rfc} \left(\sqrt{\frac{\frac{1}{2}N^2E^2|h_0,|T_b}{(M-1)P_mT_b + N \times N \cdot N_0}} \right) \]

\[BER_{\text{LLN}}^{\text{EGC}} = \frac{1}{2} e^{rfc} \left(\sqrt{\frac{\frac{1}{2}N \cdot SNR}{(M-1) \cdot SNR + N}} \right) \] (15)

Where N is the number of sub-carriers and M is the number of users.

2) CLT: Central Limit Theorem: A third possible approximation can be obtained by applying the CLT for the limiting case of large N. Using the CLT results in a BER of [3],

\[BER_{\text{CLT}}^{\text{EGC}} = \frac{1}{2} e^{rfc} \left(\sqrt{\frac{\frac{1}{2}N \cdot SNR}{(2 - \frac{1}{2})SNR + (M-1)SNR + N}} \right) \]

We have the BER function of N, M and the SNR.

Thus, these equalization techniques have two conflicting goals: to combat noise and to combat interference. In the process of combating one form of degradation, the receiver becomes more susceptible to the other. EGC may be desirable for its simplicity. It should be noted that future communication systems tend to be headed in the direction of interference-limited channels, as they attempt to multiplex as many users as possible using the same resources.

While these techniques are not optimal in the sense that they do not address the minimization of some performance parameter [4], they are noteworthy for their relative simplicity and their intuitive feel for the underlying effects of the coding of the subcarriers. It should be noted that although CE is not optimal, it produces low BERs that are close to the theoretical limit of the subcarriers. It should be noted that future communication systems tend to be headed in the direction of interference-limited channels, as they attempt to multiplex as many users as possible using the same resources.

\[\alpha = \frac{(1 - q^N)(1 + q)}{(1 + q^N)(1 - q)} \] (16)

- The BER of C-EGC with LLN approximation is given by:

\[BER_{\alpha}^{\text{C-EGC}} = \frac{1}{2} e^{rfc} \left(\sqrt{\frac{0.5(\sum_{i=0}^{N-1} h_{0,i}g_{0,i})^2}{\sigma_{\text{int}}^2 + \sigma_{\eta}^2}} \right) \] (17)

where:

\[\sigma_{\text{int}}^2 = \frac{(M-1)N}{N} \sum_{m=0}^{N-1} \sum_{i=0}^{N-1} \alpha_{0,i}^2 \] (18)

\[\sigma_{\eta}^2 = \frac{Nq}{T_0} \sum_{i=0}^{N-1} \alpha_{0,i}^2 \]

\[\sum_{i=0}^{N-1} \alpha_{0,i} = \sum_{i=0}^{N-1} q^{i+1} = 1 - q^N \]

\[\sum_{i=0}^{N-1} q^{2i+2} = 1 - q^{2N} \]

\[\left(\sum_{i=0}^{N-1} \alpha_i \right)^2 = \frac{(1 - q^N)(1 + q)}{(1 - q)(1 - q^N)} = \alpha \]

We have then,

\[BER_{\alpha}^{\text{C-EGC}} = \frac{1}{2} e^{rfc} \left(\sqrt{\frac{\alpha \pi/4N \cdot SNR}{(M-1) \cdot SNR + N}} \right) \]

\[BER_{\alpha}^{\text{C-EGC}} = \frac{1}{2} e^{rfc} \left(\sqrt{\frac{\alpha \pi/4N \cdot SNR}{(M-1) \cdot SNR + N}} \right) \] (19)

VI. THE EQUALIZATION METHODS: DOWNLINK CASE

For the transmissions in the downlink, i.e., the transmission from the base station to the terminals through the same channel.

In this section, we’ll use the notation of (7), and we assume perfect phase correction for interference. The generalized decision variable given in (7), simplifies to:

\[\vartheta_0 = a_0[k] \sum_{i=0}^{N-1} h_{0,i}g_{0,i} + \sum_{m=0}^{M-1} \sum_{i=0}^{N-1} a_m[k]\text{ }C_m[i]C_0[i]h_{0,i}g_{0,i} + \eta \] (20)

The used codes are orthogonal, the product, \(c_{k,i}c_{k,j} \), is then, equal to 1 with the probability 1/2 and -1 with the same probability for \(i \neq j \).

\[\vartheta_0 = a_0[k] \sum_{i=0}^{N-1} h_{0,i}g_{0,i} + \sum_{m=0}^{M-1} a_m[k] \left(\sum_{i=0}^{N-1} h_{0,i}g_{0,i} - \sum_{j=0}^{N-2} h_{0,j}g_{0,j} \right) + \eta \] (21)

A. Controlled Equal Gain combining (C-EGC)

With this technique of combining each branch of diversity is balanced equally by:

\[g_k = \alpha_{0,i} \frac{h_{0,i}^*}{|h_{0,i}|} \]

where \(\alpha_{0,i} = q_{i+1} \), \(i = 0, 1, ..., N - 1 \), and the decision variable \(\vartheta_0 \) becomes:
The decision variable can be written as:

\[\vartheta_0 = a_0[k] \sum_{i=0}^{N-1} q^{i+1} |h_{0,i}| + \]

\[\sum_{m=0}^{M-1} a_m[k] \left(\sum_{i=0}^{N-2} q^{i+1} |h_{0,i}| - \sum_{j=0}^{N-2} q^{j+1} |h_{0,j}| \right) + \eta \] (22)

The decision variable can be written as:

\[\vartheta_0 = Info + Inter + Noise \]

where "Info" is the utile information, "Inter" is the interference terms, and "Noise" represents the Gaussian noise, with:

\[Info = a_0[k] \sum_{i=0}^{N-1} q^{i+1} |h_{0,i}| \]

\[Inter = \sum_{m=0}^{M-1} a_m[k] \left(\sum_{i=0}^{N-2} q^{i+1} |h_{0,i}| - \sum_{j=0}^{N-2} q^{j+1} |h_{0,j}| \right) \]

\[Noise = \eta \]

B. The Performances of the C-EGC Equalizer

The estimation of the error probability is based on the effect that the interferences of multiple access are from several independent sources.

These interferences are approximated by a Gaussian variable.

The error probability by binary element is given by:

\[BER = 0.5erfc \left(\frac{0.5 \left(\sum_{i=0}^{N-1} h_{0,i} \vartheta_0 \right)^2}{\sigma_{inter}^2 + \sigma_{noise}^2} \right) \]

with: \(\sigma_{inter}^2 = 4(M-1)q^2 \left(1 - \frac{q^N}{1 - q^2} - \pi \left(1 - q^{N/2} \right)^2 / 4 (1 - q^2)^2 \right) P_0 \)

and, \(\sigma_{noise}^2 = 2N_0 / T_0 - \frac{q^N}{1 - q^2} \) (See the Appendix IV for more details).

with \(SNR = \frac{P_0 T_0}{N_0} \) and the approximation using LLN, we have:

\[BER = 0.5erfc \left(\frac{\pi Q_1^2}{4(M-1)(Q_2 - \frac{Q_1^2}{4})} + \frac{1}{SNR} Q_2 \right) \]

with: \(Q_1 = 1 - q^{N/2} / 1 - q^2 \), and \(Q_2 = \frac{1 - q^N}{1 - q^2} \). for more details (see the Appendix IV).

For \(q = 1 \) we have the classical EGC equalization, from [4] and with a LLN approximation, the BER is given by:

\[BER = 0.5erfc \left(\frac{\pi/4}{2(M-1) \sqrt{ \frac{N}{1 - \frac{\pi}{4}} + \frac{1}{SNR} } } \right) \]

The following figure shows the performances comparison between the two techniques for a variation of the parameter \(q \) in the interval \(0 < q < 1 \), so there is a \(q_0 \) that gives good results for the second method.

VII. Numerical and Simulation Results

In this section, the approximations for the BER using the LLN and the CLT will be evaluated numerically. Using the expressions for the BER obtained for uplink transmissions in a Rayleigh fading channel, the average BER versus the number of co-channel interferers with a spreading factor \(N = 128 \) of is shown below. To calculate the BER, it is assumed that the local-mean power of each interferer is equal to the local-mean power of the desired signal. The SNR, which is assumed to be 10dB, is defined to be: \(SNR = \frac{\pi T_0}{N_0} \). Where \(\pi_0 \) is the power of each user supposed equal for all users.

The figure (1) shows the BER performance of EGC and Controlled EGC for MC-CDMA : Uplink Case for \(q = 0, \alpha = 1 \) and \(\sigma^2 = 0 \). We remark in this case, the EGC and C-EGC are equivalent, because we don’t have any control of EGC when \(q = 0 \) and \(\alpha = 1 \).

The figure (2) presents the BER performance of EGC and Controlled EGC for MC-CDMA in the case of uplink transmission for different values of controlled equalizers : \(q = 0.2, \alpha = 1.5 \) and \(\sigma^2 = 0.0417 \). We remark that, in this case, C-EGC outperforms the EGC technique.

The figure (3) describes the BER in function of interferers (users) for the equalizers EGC and for different values of controlled equalizers \(q = 0.5, \alpha = 3 \) and \(\sigma^2 = 0.3333 \). The new equalizer introduces a control parameter to eliminate, simultaneously, the interferences and the noise. We observe that the new equalizers improve the performances in comparison to the classical EGC technique.
The figure (1) shows the BER performance of EGC and Controlled EGC for MC-CDMA in the case of downlink transmission for different values of controlled equalizers: \(q = 0, \alpha = 1 \) and \(\sigma^2 = 0 \). We remark in this case, the EGC and C-EGC are equivalent, because we don’t have any control of EGC when \(q = 0 \) and \(\alpha = 1 \).

The figures (4 and 5) describe the BER function of interferes (users) of the two equalizers EGC and C-EGC and for a downlink transmission in the case of different control parameters of EGC equalizer: \(q = 0.2, \alpha = 1.5 \) and \(\sigma^2 = 0.0417 \). As the number of users is increased, C-EGC outperforms the classical EGC technique. Although, the interference increases, the increase is not great enough to balance the adverse effects of noise amplification. We remark that C-EGC has better performance than EGC for all number of interferes for the downlink.

The figure (6) presents the BER in function of the signal to Noise Ration (SNR) for the two equalizers EGC and C-EGC in the case of uplink transmission. We remark that the BER of C-EGC is very weak compare to the BER of EGC.

VIII. CONCLUSION

A digital modulation technique called Multi-Carrier Code Division Multiple Access was analyzed in Rayleigh fading channel. The performance of this technique, gauged by the average bit error rate, was analytically and numerically evaluated for some equalization techniques that fall under classical diversity techniques. These techniques, Equal Gain Combining, and Controlled EGC, perform equalization in the frequency domain, taking the component of each subcarrier (which represents the fading of the channel at a corresponding frequency) and performing a multiplicative operation on this component.
In the case of the EGC equalizer, we have:

$$
\sigma_n^2 = N^{-1} \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \int_{kT_b}^{(k+1)T_b} \frac{2}{T_b^2} N_0 E\{g_{0,i}g_{0,j}\}
$$

$$
E\{\cos(2\pi f_i t_1 + 2\pi i \frac{F}{T_b} t_1 + \hat{\theta}_{0,i}) \cos(2\pi f_i t_2 + 2\pi i \frac{F}{T_b} t_2 + \hat{\theta}_{0,i})\} dt_1 dt_2
$$

$$
\sigma_n^2 = \frac{2}{T_b^2} N_0 E\{g_{0,i}^2\}
$$

$$
\sigma_n^2 = \frac{2}{T_b^2} N_0 E\{g_{0,i}^2\} \frac{1}{2} T_b
$$

$$
\sigma_n^2 = N \frac{N_0}{T_b} E\{\rho_{0,i}^2\}
$$

$$
\rho_{c-ecg} = a_0[k] \sum_{i=0}^{N-1} h_{0,i} \alpha_{0,i}
$$

$$
\rho_{c-ecg} = \frac{4}{T_b} E\{n(t_1)n(t_2)\} E\{g_{0,i}g_{0,j}\}.E\{\cos(2\pi f_i t_1 + 2\pi i \frac{F}{T_b} t_1 + \hat{\theta}_{0,i})\}
$$

$$
\cos(2\pi f_i t_2 + 2\pi i \frac{F}{T_b} t_2 + \hat{\theta}_{0,i})\} dt_1 dt_2
$$

$$
E\{n(t_1)n(t_2)\} = \frac{N_0}{2} \delta(t_1 - t_2)
$$

$$
\rho_{c-ecg} = \sum_{m=1}^{M-1} a_m[k] \sum_{i=0}^{N-1} C_m[i] C_0[i] h_{m,i} h_{0,i} \alpha_{0,i} \cos(\hat{\theta}_{m,i})
$$

$$
\sigma_{inter}^2 = (M-1) E\left[\sum_{i=0}^{N/2-1} h_{0,i} g_{0,i} - \sum_{j=0}^{N/2-1} h_{0,j} g_{0,j}\right]^2
$$

$$
\sigma_{inter}^2 = 2(M-1) E\left[\sum_{i=0}^{N/2-1} h_{0,i} g_{0,i}\right]^2 - E^2\left[\sum_{j=0}^{N/2-1} h_{0,j} g_{0,j}\right]
$$

In the case of the EGC equalizer, we have:

$$
g_{0,i} = q^{i+1} \frac{h_{0,i}^*}{|h_{0,i}|}, i = 0, 1, \ldots, \frac{N}{2} - 1
$$

$$
g_{0,j} = q^{j+1} \frac{h_{0,j}^*}{|h_{0,j}|}, j = 0, 1, \ldots, \frac{N}{2} - 1
$$
that gives: \[\sigma_{\text{inter}}^2 = 2(M - 1)[E(\sum_{i=0}^{N/2-1} q^{i+1} | h_{0,i} |)^2 - \]
\[E^2(\sum_{j=0}^{N/2-1} q^{i+1} | h_{0,j} |)]. \]

In the case of EGC equalizer, we have:
\[\sigma^2_{\text{inter}} = 2(M - 1)[\sum_{i=0}^{N/2-1} q^{2(i+1)} E|h_{0,i}|^2 - \]
\[(\sum_{j=0}^{N/2-1} q^{i+1} E|h_{0,j}|)^2]. \]

In the case of Rayleigh channel, we have:
\[E|h_{0,i}| = \frac{\sqrt{\pi}}{\sqrt{2}} \sqrt{P_{0,i}}, \]
and \[E|h_{0,i}|^2 = 2P_{0,i}, \]
where \(P_{0,i} \) is the power of each user.

that gives:
\[\sigma_{\text{inter}}^2 = 2(M - 1)[2 \sum_{i=0}^{N/2-1} q^{2(i+1)} - \pi 2 \sum_{i=0}^{N/2-1} q^{i+1}^2] P_{0,i}. \]

let: \(S_1 = \sum_{i=0}^{N/2-1} q^{2(i+1)} = q^2 - \frac{q^N}{1 - q^2} \)
and \(S_2 = \sum_{i=0}^{N/2-1} q^{i+1} = \frac{1 - q^{N/2}}{1 - q} \).

then we have:
\[\sigma_{\text{inter}}^2 = 4(M - 1) \left[q^2 \left(1 - \frac{q^N}{1 - q}\right) - \frac{\pi}{4} (1 - q^{N/2})^2 \right] P_{0,i}, \]
with the hypothesis that the all users have the same powers, i.e., \(P_{0,i} = P_0 \), we have:
\[\sigma_{\text{inter}}^2 = 4(M - 1)q^2 \left[\frac{1 - q^N}{1 - q^2} - \frac{\pi}{4} (1 - q^{N/2})^2 \right] P_0. \]

APPENDIX D

THE NOISE VARIANCE

we have, \(\sigma_{\text{noise}}^2 = \frac{N_0}{T_b} \sum_{i=0}^{N-1} E(g_{0,i}^2), \)
\[\sigma_{\text{noise}}^2 = \frac{N_0}{T_b} \left(\sum_{i=0}^{N/2-1} E(g_{0,i}^2) + \sum_{i=0}^{N/2-1} E(g_{0,i}^2) \right). \]

In the case of EGC equalizer, we have: \(g_{0,i} = q^{i+1} \frac{h_{0,i}}{|h_{0,i}|}, i = 0, 1, \ldots, \frac{N}{2} - 1. \)
that implies:
\[\sigma_{\text{noise}}^2 = \frac{N_0}{T_b} \left(\sum_{i=0}^{N/2-1} q^{2(i+1)} + \sum_{i=0}^{N/2-1} q^{2(i+1)} \right). \]
that gives: \(\sigma_{\text{noise}}^2 = 2 \frac{N_0}{T_b} q^2 \frac{1 - q^N}{1 - q^2}. \)

REFERENCES

[1] Project Broadband Radio Access Networks (BRAN); HYPERLAN Type 2, Technical specification; Physical Layer.
[2] MC-CDMA for next generation systems. The IST projects Matrice and 4MORE.