A Framework of Monte Carlo Simulation for Examining the Uncertainty-Investment Relationship

George Yungchih Wang
National Kaohsuing University of Applied Science, Taiwan

Abstract—This paper argues that increased uncertainty, in certain situations, may actually encourage investment. Since earlier studies mostly base their arguments on the assumption of geometric Brownian motion, the study extends the assumption to alternative stochastic processes, such as mixed diffusion-jump, mean-reverting, and jump amplitude process. A general approach of Monte Carlo simulation is developed to derive optimal investment trigger for the situation that the closed-form solution could not be readily obtained under the assumption of alternative process. The main finding is that the overall effect of uncertainty on investment is interpreted by the probability of investing, and the relationship appears to be an inverted U-shaped curve between uncertainty and investment. The implication is that uncertainty does not always discourage investment even under several sources of uncertainty. Furthermore, high-risk projects are not always dominated by low-risk projects because the high-risk projects may have a positive realization effect on encouraging investment.

Keywords—real options, geometric Brownian motion, mixed diffusion-jump process, mean-reverting process, jump amplitude process

I. INTRODUCTION

The relationship between uncertainty and investment has fascinated financial economists for a long time. Early literature on real options theory argues that increased uncertainty causes a decrease in the current level of investment by raising the value of option of waiting. For example, Cukierman [3] presents a Bayesian framework to address the idea that an investment opportunity can be more valuable by waiting longer for more information arrivals. Pindyck [12, 13] and Dixit [4, 5] also find that a higher level of uncertainty not only increases option value, but also brings about a higher optimal investment trigger to such an extent that uncertainty may in effect discourage investment.

Some studies based on real options theory suggest that the relationship between uncertainty and investment is non-monotonic. [6] Abel and Eberly [1] further contend that the uncertainty-investment relationship is positive for a lower of uncertainty while the relationship is negative for a high level of uncertainty, suggesting an inverted U-shaped relationship.

Extending standard real options theory, Sarkar [15] and Rhys, Song, and Jindrichovska [14] explore the relationship between uncertainty and investment by asking the question how much the likelihood is that a project value, \(V \), would reach optimal investment trigger, \(V' \), given that the project value evolves as a geometric Brownian motion (GBM). Both studies apply a similar probability function, and find that the uncertainty-investment relationship is not always negative. They show that increased uncertainty under a GBM, in certain situations, may encourage investment due to a higher probability of investing or an earlier time of first passage.

Recent studies on investment theory suggest that the relationship between uncertainty and investment mostly is nonlinear. Lensink and Murinde [7] empirically examine the data of UK firms and propose the inverted-U hypothesis for the effect of uncertainty on investment. In addition, Wong [18] analyzes optimal investment timing in a real options model and argues that optimal investment trigger exhibits a U-shaped pattern against project volatility.

This paper aims to investigate the uncertainty-investment relationship by relaxing the assumption of state variable to various stochastic processes by applying the technique of Monte Carlo simulation. The stochastic of interest are GBM, mixed diffusion-jump (MX), mean-reverting process (MR), and jump amplitude process (JA). Earlier studies, such as Sarkar [15] and Rhys et al. [14], apply a probability function to measure the probability of reaching a critical value under a GBM, yet their models fail to address the relationship between uncertainty and investment under an alternative stochastic process. In contrast, Monte Carlo simulation is relatively flexible and advantageous when the underlying variable follows an alternative process in a finite time horizon.

The rest of the paper is organized as follows: Section 2 introduces the specifications of alternative stochastic processes both in continuous time and in discrete time, serving as a foundation for the subsequent sections. Section 3 proposes the approach of Monte Carlo simulation for deriving optimal investment trigger in a more general setting. Section 4 examines the relationship between uncertainty and investment by decomposing the overall effect into the effect of uncertainty and the effect of realization. The probability of investing is then suggested to measure the overall effect of uncertainty on investment. Section 5 gives concluding remarks.

II. OPTIMAL INVESTMENT TRIGGER

Since volatility component in stochastic process is regarded as major source of uncertainty in evaluating capital investments, in this section a variety of stochastic processes are introduced as well as the derivation of optimal investment triggers. A framework of Monte Carlo simulation for deriving optimal investment is also proposed for alternative stochastic models that could not be readily solved for a closed form solution.
A. Geometric Brownian Motion

In traditional real options literature, the GBM assumption is widely assumed to address for the uncertainty of random walk. The main property of GBM is that the rate of return is assumed to be normally distributed, implying a lognormal distribution of the project value. A GBM in continuous time is expressed as follows:

\[dV = \alpha V dt + \sigma V dz \]

where \(\alpha \), \(\sigma \), and \(dz \) denote drift rate, instantaneous volatility, and an increment of a standard Wiener process, respectively.

A GBM process in discrete time could be changed into the following form:

\[\Delta \ln V = \nu \Delta t + \sigma \sqrt{\Delta t} \epsilon \]

where \(\Delta t \) and \(\epsilon \) represent a small interval of time and a random drawing from a standard normal distribution, respectively, and \(\nu = \alpha - \sigma^2/2 \).

Suppose a firm is presented with an investment opportunity that pays an irreversible investment cost, \(I \), in return for an uncertain project value, \(V \). This is a standard problem of optimal investment timing in real options literature. \(V \) is considered to be the major source of uncertainty and is normally assumed to follow a GBM as in Equation (1) due to the ease of deriving a tractable solution. The value of an investment opportunity is determined by an optimal investment policy that maximizes the option value. Let \(F(V) \) denote the value of the investment opportunity and the superscript * denote optimality. McDonald and Siegel [8], Pindyck [13], and Dixit and Pindyck [6] have demonstrated that the optimal investment trigger is given by

\[V_{\text{MBM}}^{\ast} = \left(\frac{h}{h - 1} \right) I \]

where \(V_{\text{MBM}} \) and \(I \) denote the optimal GBM trigger and the investment cost, respectively, and

\[h = \left(1 - \frac{r - \delta}{\sigma^2} \right) + \sqrt{\left(\frac{r - \delta}{\sigma^2} - \frac{1}{2} \right)^2 + \frac{2r}{\sigma^2}} \]

where \(\delta \) represents convenience yield of holding a project, which also implies the opportunity cost of deferring a project.

B. Mixed Diffusion-Jump Process

While the preceding GBM could describe the incremental changes of random walk, the process fails to capture the significant impact of random informational arrival. A mixed diffusion-jump process thus is proposed to combine a Poisson jump process into a GBM, expressed as follows:

\[dV = (\alpha - \lambda k) V dt + \sigma V dz + V dq_t \]

where \(dq_t \) is an increment of a Poisson jump process with a mean arrival rate \(\lambda \) such that

\[dq_t = \begin{cases} \varphi & \text{with a probability of } \lambda dt \\ 0 & \text{with a probability of } 1 - \lambda dt \end{cases} \]

where \(\varphi \sim N(k, \sigma \varphi) \) denotes a proportional jump relative to \(V \) if a jump occurs.

Note that the Poisson jump term \(dq_t \) is assumed to be independent of \(dz \) such that \(E(dq_t dz) = 0 \). Equation (6) also reveals that the actual growth rate of such a mixed diffusion-jump process is not \(\sigma \) but instead \((\sigma - \lambda k) \) in order to adjust the influence of a Poisson event. For the simulation purpose, the discrete-time version of the mixed diffusion-jump process is given as follows:

\[\Delta \ln V = \nu \Delta t + \sigma \sqrt{\Delta t} \epsilon + D_t \]

where \(D_t \) denotes an increment of a Poisson jump in discrete time with a mean arrival rate \(\lambda \) such that

\[D_t = \begin{cases} \varphi & \text{with a probability of } \lambda M \\ 0 & \text{with a probability of } 1 - \lambda M \end{cases} \]

It is worth noting that McDonald and Siegel (1986) and Dixit and Pindyck (1994) also propose a mixed diffusion-jump process with the sign of the jump term changed into negative to describe the situation in that the project becomes suddenly worthless when a major competitor of the same product enters the market.

For an investment opportunity whose value follows a mixed diffusion-jump process, McDonald and Siegel [8] and Dixit and Pindyck [6] show that when the value of the project may be appropriated by competitive arrivals such that the project becomes suddenly worthless, the solution of optimal trigger under such a mixed diffusion-jump process, \(V_{\text{MBM}} \), has the same form as Equation (3) with \(h_b \) substituted by \(h_0 \) as follows:

\[h_0 = \left(1 + \frac{r - \delta}{\sigma^2} \right) + \sqrt{\left(\frac{r - \delta}{\sigma^2} - \frac{1}{2} \right)^2 + \frac{2r + \lambda}{\sigma^2}} \]

where \(\lambda \) denotes the jump intensity of competitive arrivals.

C. Mean-Reverting Process

Another class of commonly used stochastic process is a mean-reverting process which is often proposed to describe the price behavior of commodity and natural resources. The most prominent property of a mean-reverting process is that its growth rate is not a constant but instead a function of a difference between current value and long-run mean, suggesting that growth rate in effect responds to disequilibrium. Dixit and Pindyck [6] examine the value of an investment opportunity whose value follows a mean-reverting process. The specification of this commonly used mean-reverting process is given below:
\[dV = \eta (F - V) dt + \sigma V dq \]
\[\eta \] denotes a speed of mean reversion and \(F \) is a long-run mean.

As there are many ways to specify a mean-reverting process, Dixit and Pindyck’s specification is somewhat arbitrary but convenient to find a “quasi-analytical” solution for the value of the project. Equation (10) can be alternatively expressed into the following equation in discrete time:

\[\Delta \ln V = \left[\eta (F - V) - \frac{1}{2} \sigma^2 \right] \Delta t + \sigma \sqrt{\Delta t} e \]

Under the assumption of a mean-reverting process, Dixit and Pindyck [6] provide the solutions of an investment opportunity and optimal investment trigger, respectively, as follows:

\[F(V) = B V^g \]
\[V^{\ast} = F(V^{\ast}) + I \]

where \(\theta = \frac{\eta^2}{2 \sigma^4} \left[\frac{1}{2} - \frac{\eta^2}{2 \sigma^2} \right] \), \(x = \frac{\eta^2}{2 \sigma^2} - \frac{2 \eta}{\sigma} \), \(g = 2 \theta + 2 \eta^2 / \sigma^2 \), and

\[G(x; \theta, g) = 1 + \frac{\theta}{g} x + \frac{\theta(\theta + 1)}{g(g + 1)} x^2 + \frac{\theta(\theta + 1)(\theta + 2)}{g(g + 1)(g + 2)} x^3 + \cdots \].

Note that \(G(x; \theta, g) \) stands for an infinite confluent hypergeometric function, and thus the value of the investment opportunity cannot be readily solved. Both Equation (12) and (13) must be solved numerically from an iterative procedure to obtain \(V^\ast \) and \(F(V^\ast) \).

D. Jump Amplitude Process

To capture the major impact of technological breakthrough and informational arrivals in an R&D project, Pennings and Lint [11] suggest a jump amplitude process to evaluate such an investment opportunity. The jump amplitude process differs from other types of jump process in a sense that it allows for a random jump direction and a stochastic jump size in order to characterize the nature of R&D investments. A jump amplitude process can be mathematically expressed as follows:

\[dV = \alpha \varepsilon dt + \sigma dq_2 \]

where \(dq_2 \) an increment of a stochastic jump process. The jump term, \(dq_2 \), is characterized by a parameter of jump intensity \(\lambda \) such that

\[dq_2 = \begin{cases} \Phi \text{ with a probability of } \lambda dt \\ 0 \text{ with a probability of } 1 - \lambda dt \end{cases} \]

where \(\Phi \) denotes a proportional jump relative to \(V \).

By definition, \(\Phi = X \Gamma \) where \(X = 1 \) or \(-1 \), \(P(X = 1) = p \), and \(\Gamma \)

\[X \sim \text{Wil}(x, 2). \]

The jump amplitude process in discrete time is modeled as follows:

\[\Delta \ln V = \nu \Delta t + D_2 \]

where \(D_2 \) denotes an increment of a stochastic jump component in discrete time with a mean arrival rate \(\lambda \), and \(D_2 \) is expressed by

\[D_2 = \begin{cases} \Phi & \text{with a probability of } \lambda dt \\ 0 & \text{with a probability of } 1 - \lambda dt \end{cases} \]

Since there is no closed-form solution for an investment opportunity whose uncertainty evolves as a jump amplitude process. Numerical techniques must be applied to solve both \(F(V^\ast) \) and \(V^\ast \).

III. The Framework of Monte Carlo Simulation

A. The Basic Approach

Since irreversibility complicates capital investments in that closed-form expressions for optimal investment triggers seldom exist under an alternative process, in this section an alternative framework for deriving optimal trigger under an alternative process in a finite time horizon is proposed. As it is known that a firm can either defer the project in the unfavorable market condition or launch the project in the favorable market condition, an investment opportunity is equivalent to a call option. Suppose that the investment opportunity will disappear at a finite future time \(T \), if the firm does not take any actions. Therefore, the value of an investment opportunity at time \(T \), given the information set \(\Psi_T \), is expressed as follows:

\[F_t(V_t) = \max(V_t - I_0) \Phi \]

According to Equation (18), the value of investment opportunity at time \(t \) can be given by

\[F_t = E^F \left[e^r T \max(V_T - I_0) \right] \]

where \(E^F \) denotes an expectation operator in a risk-adjusted world, \(P \) a risk-adjusted probability measure, and \(\rho \) a risk-adjusted discount rate.

In the risk-neutral world, \(F_t \) can be derived from

\[F_t = E^Q \left[e^{r T} \max(V_T - I_0) \right] \]

or

\[F_t = e^{-\rho T} E^Q \left[\max(V_T - I_0) \right] \]

where \(r \) denotes a risk-free rate and \(Q \) a risk-neutral probability measure.
It is worth noting that when the market is complete or the investor is risk-neutral, there exists a unique risk-neutral probability measure Q such that F can be evaluated by Equation (20). If the market is incomplete or the investor is risk-averse, there does not exist such a unique Q and thus F can be evaluated by Equation (19).

Equation (20) or (21) states a fundamental equation for valuing an investment opportunity in a numerical procedure of Monte Carlo simulation, given any V_i.

To determine the optimal investment rule, we need to search for an investment trigger V_i^* such that the net present value of taking the project, $V_i - I$, can compensate the loss of option of waiting, $F(A(V_i^*))$. This optimal investment policy can be described by a value-matching condition as follows:

$$E(V_i^*) = V_i^* - I \quad (22)$$

or alternatively

$$V_i^* = E(V_i^*) + I \quad (23)$$

To rule out the possibility of an arbitrage opportunity or the “kinked” situation, the first derivative of the value-matching condition with respect to the state variable at the maximum must be equal on both sides. This is the famous Samuelson smooth-pasting condition given below:

$$F_i(V_i^*) = 1 \quad (24)$$

By substituting Equation (21) into (23), we have optimal investment trigger, V_i^*, expressed as follows:

$$V_i^* = e^{-rT}E^Q\left(\max(V_i^*-I,0)\right)\bigg|_{V_i^*} + I \quad (25)$$

Equations (24) and (25) represent two fundamental equations necessary to derive optimal investment trigger, V_i^*. There are two major advantages of applying the approach to derive optimal investment triggers. First, Equations (24) and (25) would hold regardless of the underlying assumption of stochastic process. As mentioned earlier, literature has indicated that there is a closed-form solution for optimal investment triggers under a GBM. [8, 13, 6] For the projects whose state variable follows an alternative process, the closed-form solutions for optimal triggers are generally unavailable. Therefore, the proposed approach is particularly advantageous when project value follows an alternative stochastic process.

Second, Equation (25) can be conveniently applied to the case that the investment opportunity will disappear in a known expiration of time in future. Conventional real options literature mostly makes an implicit assumption that the investment opportunity can exist in an infinite time horizon for the convenience in deriving analytical solutions. This assumption is not quite realistic in practice, especially when the factor of technology obsolesce is involved with the project or the deferral option has an expiration date.

It is important to note that growth rate (or drift rate) must be assumed to be less than discount rate (either risk-adjusted discount rate or risk-free rate), otherwise it will be never optimal to early exercise an investment opportunity before the expiration time. By setting growth rate less than discount rate, it is equivalent to assume that there exists a positive convenience yield which accounts for an opportunity cost (denoted by δ) of delaying the construction of a project. In a risk-neutral world, when convenience yield plays a role in real options valuation, the actual growth rate of an underlying process must be adjusted by reducing an amount of convenience yield. Therefore, as the opportunity cost of delaying a project becomes larger, the actual growth rate of the underlying process becomes smaller.

Since the approach is based on the valuation of a European-style option, one may ask whether the early exercise premium matters in real options with the American nature. According to Barone-Adesi and Whaley [2], for an at-the-money option with a moderate opportunity cost ($\delta = 4\%$) and a short time horizon ($T = 0.25$ or 0.5), early exercise premium is estimated to be 0.00%. For an at-the-money option with a longer time horizon ($T = 2$), early exercise premium is estimated to be less than 1%. Therefore, it is practical to assume that the effect of early exercise premiums is minimal and may be negligible in the situations where the at-the-money project is of interest.

B. The Implementation

As mentioned in the preceding subsection, the technique of Monte Carlo simulation can be applied to derive optimal investment trigger under an alternative process. Following the idea, we then describe the algorithm of an iterative procedure in the implementation of Monte Carlo simulation. As the first step of the procedure, a large number of random paths, given a specific stochastic process, are generated to compute terminal payoffs. The next step is to discount terminal payoffs backward at a discount rate, which equals the risk-free rate in the risk-neutral world or a risk-adjusted rate in the risk-adjusted world. If the discount rate is not certain over the investment horizon, an interest rate process needs to be simulated simultaneously. For a reasonable short time horizon, we can assume that the discount rate is constant for simplicity. The value of an investment opportunity can be computed from the mean of discounted payoffs. The value of optimal investment trigger must be derived from an iterative procedure which equates V^* and $F(V^*) + I$.

To derive optimal investment trigger, V^*, in the iterative procedure it is necessary to start with the first two initial values V_1 and V_2, where V_1 and V_2 are two guessed numbers which are lower than V^*. Next, V_1 and V_2 are then applied to evaluate the right-hand side of Equation (25). Since it is very unlikely that any of the two numbers would equate the value-matching condition, we then compute the slope (χ) of the line connecting both numbers as follows:

$$\chi = \frac{V_2^* - V_1^*}{V_2 - V_1}$$

1 See Dixit and Pindyck [6].

2 The risk-free rate is assumed to be 8%. Refer to Table 2 in Barone-Adesi and Whaley [2].

3 Refer to Table 5 in Barone-Adesi and Whaley [2].
The optimal investment trigger under a given stochastic process can be derived from the approach described in the preceding section. In each simulation trial, if at any time the project value \(V_i \) is greater than \(V^* \), this simulation trial is counted as a case of taking on the project. To examine the overall effect of uncertainty under a specific stochastic process on investment, the probability of investing is then measured by computing the total cases of taking on the project out of the total simulation trials. The total number of simulation trials should be large enough to ensure a robust result. Thus, a higher probability of investing implies a greater chance of project acceptance, hence a positive impact on investment, and vice versa.

\[
P(V^*) = \frac{k}{n}
\]

where \(n \) is the number of total simulation trials and \(k \) is the total cases of taking on the project.

On the relationship between uncertainty and investment, we argue that there are two opposing forces within the overall effect of uncertainty on investment. The first force is termed the “variance effect”, which states that an increase in instantaneous volatility would raise the level of optimal investment trigger and therefore delay investment. The variance effect could be identified by observing how optimal investment trigger changes as project volatility changes. The second force is called the “realization effect”, which describes the situation in that the likelihood of reaching optimal investment trigger may increase due to a higher level of instantaneous volatility. The realization effect could be identified by observing how the probability of investing changes with increased volatility. Consequently, the relationship between uncertainty and investment could be obtained by combining these two effects.

A. The Uncertainty-Investment Relationship under a GBM

To illustrate the relationship between uncertainty and investment, numerical analysis based on a base case is conducted. Consider an investment project whose investment cost, \(I \), is 100 in return for a project value at time \(t \), \(V_t \). \(V_0 \) is assumed to be 100 since the option to invest matters especially for a near “at-the-money” project. The other parameter values are given as \(r=8\% \), \(\sigma=1/52 \), and \(T=5 \). Suppose the underlying stochastic process follows a GBM. With the framework developed in Section 3, the variance effect can be readily observed from the changes in optimal investment...
triggers as project volatility changes. The variance effect under a GBM is exhibited in Figure 1.

As displayed in Figure 1, it is obvious that optimal investment trigger, V_{GBM}^*, increases with σ, and decreases with δ. The intuition underlying the positive relationship of V_{GBM}^* and σ is that as investment triggers increases with uncertainty, management should defer the project longer until the market condition becomes favorable, i.e. $V_t > V_{GBM}^*$. However, as the opportunity cost of holding a project increases, it then becomes insensible to postpone the project any longer, hence lowering optimal investment triggers.

To identify the realization effect, 10,000 trials are simulated to evaluate the probability of investing. The simulation result is displayed in Figure 2. As seen in Figure 2, the probability of investing is initially an increasing function of volatility, but after a certain point it becomes a decreasing function of volatility. This means for a lower level of volatility, an increase in uncertainty actually raises the probability of investing and thus has a positive influence on investment, while an increase in uncertainty, on the other hand, discourages investment for a higher level of volatility. This result of the inverted U relationship between uncertainty and investment is consistent with the finding in Lensink and Murinde [7].

In addition, the probability of investing, as shown in Figure 2, increases with the opportunity cost of holding a project, given volatility being unchanged. Thus, an increased convenience yield may have a positive impact on investment, encouraging management to launch investment sooner.

To sum up, the variance effect has a negative impact on investment due to the higher optimal investment triggers, while the realization effect can have a positive or negative impact on investment, depending on the combinations of parameter values. Consequently, the overall effect of these two offsetting forces on investment is nonlinear. The numerical analysis indicates that uncertainty may in effect encourage investment for a lower level of volatility and discourage investment for a higher level of uncertainty. Furthermore, a greater opportunity cost may lower optimal investment trigger, leading to a positive impact on investment.

Another stochastic process of interest is a mixed diffusion-jump process. Since the mixed diffusion-jump process contains an additional source of uncertainty, Poisson down jumps, it is necessary to analyze the “jump effect” on investment in addition to the variance effect. The jump effect on investment can be defined as the effect of increased jump arrivals on optimal investment triggers, other parameters being constant. As a comparison to the project under a GBM, the same parameter values in the base case are also applied in the numerical analysis. The jump effect is exhibited in Figure 3.

As shown in Figure 3, an increase in the rate of jump intensity lowers the optimal investment triggers, holding the volatility unchanged. This finding suggests that an increase in jump intensity leads to a positive effect on investment. The intuition is that management should undertake investment sooner when there is an increasing probability of jump, meaning a higher intensity of competitive arrivals. Contrast to the jump effect, the variance effect under a mixed diffusion-jump process still holds, suggesting that increased volatility has a negative impact on investment. This is possibly
because only down jumps allowed are in this specific form of mixed diffusion-jump process.

To further illustrate how the combined uncertainty of both volatility and jump influence investment, Monte Carlo simulation is then conducted to evaluate the probability of investing. Figure 4 provides the result of the probability of investing as a function of jump intensity. According to Figure 4, the probability of investing appears to be a hump-shaped curve as jump intensity increases, holding the volatility constant. For a lower level of jump intensity, the probability of investing is initially an increasing function of jump intensity, but after a certain point the probability of investing becomes a decreasing function of jump intensity. For example, given $\sigma = 20\%$, the probability of investing appears to increase for a smaller jump intensity, e.g., $\lambda < 30\%$ and to decrease for a larger jump intensity, e.g., $\lambda > 30\%$. Consequently, the overall effect of three forces on investment under a MX process appears to be an inverted U-shaped function.

Note:
$V_0 = I = 100, r = 8\%, \alpha = 4\%, \Delta t = 1/52, T = 5, Number of Trials = 10,000$

Fig. 4. The Probability of Investing as a Function of Jump Intensity (λ) Given an MX Process

Figure 4 also reveals another interesting fact that the probability of investing under an MX process is significantly higher than that under a GBM process. The intuition behind the result is that as long as there is a positive probability of competitive entry, it is disadvantageous to defer the project infinitely and thus management is forced to launch the project sooner in order to preempt potential competitions.

To sum up, there are three major findings in the numerical analysis. First, the jump effect may result in a lower optimal investment trigger, thus suggesting that the jump uncertainty may encourage investment. This result is contrary to the variance effect, which has a negative effect on investment. Second, the overall effects of combining the variance effect, the jump effect, and the realization effect, on investment appear to be an inverted U-shaped function, similar to the GBM case. Consequently, increased jump uncertainty under a MX process can encourage investment in a similar way to increased volatility uncertainty. Third, it is also demonstrated that the probability of investing appears to be larger than that the GBM case, with the competitive entry as a down jump taken into account. Therefore, increased uncertainty in terms of additional down jumps could have a positive impact on investment, contrary to conventional wisdom.

C. The Uncertainty-Investment Relationship under an MR

Metcalf and Hassett [10] and Sarkar [16] investigate the relationship between uncertainty and investment under a mean-reverting process. Metcalf and Hassett [10] argue that mean reversion has two opposing effects, the variance effect and the realized price effect, on investment, and the overall effect of these two forces are appropriately equal to such an extent that mean reversion can be justified by the common assumption of a GBM process. Sarkar [16] extends their analytical framework by considering another effect of mean reversion, termed the risk-discounting effect of systematic risk, and thus contends that mean reversion in fact has a major (either positive or negative) impact on investment, depending on the combination of parametrical values of project duration, cost of investing, and interest rate.

Consider the same investment project in the preceding base case. The optimal investment triggers under an MR process are derived according to Equations (12) and (13). Figure 5 displays the sensitivity of the optimal investment triggers, V^{MR}_{*}, to the changes in volatility and speed of mean reversion. As revealed from the diagram, V^{MR}_{*} appears to be a decreasing function of mean-reverting speed, implying that an increase in the speed of mean reversion leads to a decrease in the optimal investment trigger. This inverse relationship between speed of mean reversion and optimal investment trigger suggests that mean reversion results in a lower investment trigger, which increases the probability of project value exceeding investment trigger.

Why a faster speed of mean reversion tends to lower optimal investment trigger? As stated in Metcalf and Hassett [10], increased speed of mean reversion may lead to decreases in the long-run volatility of project value and in effect lower optimal investment trigger. It is therefore important to distinguish instantaneous volatility (or conditional volatility) from long-run volatility (or unconditional volatility) in the mean-reverting case. Consequently, even though a project under a MR process has the same instantaneous volatility as
that under a GBM, the project under a MR process tends to have a lesser long-run volatility due to the property of mean reversion.

On the other hand, the mean-reverting effect on lowering the optimal trigger for a lower level of mean reversion speed is more sensitive than for a higher level of mean reversion speed. This result is mainly because optimal investment trigger for a higher level of mean-reverting speed is pretty close to investment cost, implying a smaller option value and thus leaving a lesser space to bring optimal trigger even closer.

As we further examine the realization effect under a MR process by conducting Monte Carlo simulation, the probability of investing as a function of volatility and mean-reverting speed is exhibited in Figure 6. There are two major findings that can be drawn from the diagram. First, the probability of investing under a mean-reverting process appears to be an increasing function of volatility for the base case, holding the speed of mean reversion constant. Consequently, the inverted U-shaped relationship between uncertainty and investment is less significant in the MR case. Second, similar to the other stochastic processes, the realization effect of volatility could have positive influence on investment, suggesting that increased (instantaneous) volatility under an MR process could encourage investment due to a higher probability of investing.

It is also interesting to examine how mean reversion influences the realization effect on investment. Figure 7 displays the probability of investing as a function of mean-reverting speed. As illustrated in Figure 7, the probability of investing appears to be a convex, decreasing function of mean-reverting speed for all the levels of instantaneous volatility, suggesting that the realization effect under an MR process may reduce the chance to invest as the speed of mean reversion increases. The evidence drawn from Figure 10 is consistent with the finding in Sarkar [16]. However, this result, contrast to Sarkar [16], still holds regardless of the presence of “risk-discounting effect”.

5 Sarkar [16] states that mean reversion tends to have a positive (negative) impact on investment for long-lived (short-lived) projects, holding others constant. The short-lived project in his numerical analysis is 5 years, same as the base case our study here.

Note:
\[V_0 = I = 100, \ r = 8\%, \ \Delta t = 1/52, \ \delta = 4\%, \ T = 5, \ \text{Number of Trials} = 10,000 \]

Fig. 6. The Probability of Investing under a Mean-Reverting Process as a Function of Volatility (\(\sigma \)) and Speed of Mean Reversion (\(\eta \))

Fig. 7. The Probability of Investing under a Mean-Reverting Process as a Function of Mean-Reverting Speed (\(\eta \))

Note:
\(V_0 = I = 100, \ r = 8\%, \ \Delta t = 1/52, \ \delta = 4\%, \ T = 5, \ \text{Number of Trials} = 10,000 \)

D. The Uncertainty-Investment Relationship under a JA

The fourth stochastic process of interest is jump amplitude process, which is characterized by stochastic jumps in a setup that both jump direction and jump size are purely random. Since there is no closed-form solution for optimal investment trigger under a JA process, the technique of Monte Carlo simulation proposed in the preceding section is applied to derive \(V_{\text{JA}} \). Since the main source of uncertainty is stochastic jumps under a jump amplitude process, numerical analysis is directed at examining the overall effect of two opposing forces, the jump effect and the realization effect. The jump effect under a JA process describes how stochastic jumps impact on \(V_{\text{JA}} \) and the realization effect measures the probability of \(V \) exceeds \(V_{\text{JA}} \).

With the parametrical values in the base case, the jump effect on optimal investment trigger, by varying jump intensity (\(A \)) and mean jump size (\(Y \)), is presented in Figure 8. As shown in Figure 8, the increase in jump intensity in the setting of stochastic jumps resulting in raising optimal investment triggers, thus suggesting a negative impact on investment. Furthermore, an increase in jump size leads to an increase in \(V_{\text{JA}} \), holding jump intensity and the other parameters constant.
As both jump size and jump intensity increase, the jump effect on raising V_{JA} becomes more obvious due to an increase in option value, hence leading to a convex, increasing function of both jump intensity and jump size.

To further examine the realization effect, Monte Carlo simulation is conducted to evaluate the probability of investing. Figure 9 presents the sensitivity of the probability of investing to the changes in jump intensity for three different levels of jump size. As seen from Figure 9, the probability of investing appears to be a invested U-shaped curve as jump intensity increases. The probability of investing indicates an increasing function of jump intensity at a lower level of jump intensity, but after a certain point of jump intensity, the probability of investing becomes a decreasing function of jump intensity.

Figure 9 also shows that the curve of the probability of investing climbs up as jump size increases. Since jump size indicates another form of uncertainty, this means that increased uncertainty may increase the probability of investing. As a result, the overall effect of combining jump size and jump intensity does not necessarily discourage investment under a JA process.

V. CONCLUDING REMARKS

Conventional belief in a negative relationship between uncertainty and investment has dominated investment theory for a long time. This paper postulates an argument that increased uncertainty, in certain situations, may actually encourage investment. Since earlier studies mostly base their arguments on the GBM assumption, the study extends the assumption to alternative stochastic processes, e.g., MX, MR, and JA processes, and finds that increased uncertainty in terms of different sources may encourage investment. The overall effect of uncertainty on investment is interpreted by the probability of investing, and found to be an invested U-shaped relationship between uncertainty and investment. This finding is consistent with the conclusion in Lensink and Murinde [7], in which the UK evidence is examined.

The study proposes the technique of Monte Carlo simulation to derive optimal investment trigger and the probability of investing. The overall effect of uncertainty on investment is analyzed by decomposing the overall effect into the variance effect and the realization effect. The former describes the effect that increased uncertainty raises optimal investment trigger, thus discouraging investment; while the latter states that increased uncertainty may in reality increase the probability of investing, thus encouraging investment. For other stochastic processes, additional source of uncertainty is also explored as it may complicate the overall effect on investment. There are several additional effects under alternative processes. First, it is demonstrated that the jump effect under a MX process may lower optimal investment trigger, thus leading to a positive impact on investment. Second, the effect of mean reversion under a MR process may lower optimal investment trigger, thus leading to a positive impact on investment. Third, the effect of stochastic jumps under a JA process are complicated by jump intensity and jump size, both of which raise optimal investment trigger, thus resulting in an inverse impact on investment. As a result, uncertainty which consists of several sources of risk profiles may complicate the overall effect on investment.

The implication of the main finding is that uncertainty does not always discourage investment even in the presence of various risk sources. Furthermore, it is obvious that high-risk projects are not always dominated by low-risk projects because high-risk projects may have a positive realization effect due to a higher probability of exceeding optimal investment trigger, leading to a positive impact on investment. Management may improve firm value by choosing the right type of projects under the consideration of market conditions. Since this study considers an investment project at the individual firm level, future study could direct to analyze how increased uncertainty impacts on aggregate investment.

REFERENCES

Dr. George Yungchih Wang received his PhD in Finance and Economics from Imperial College, University of London, UK, and his MBA from University of Connecticut, USA. He is currently an assistant professor at National Kaohsiung University of Applied Sciences, Taiwan, and is also a visiting professor at University of Wisconsin, La Crosse, USA. His major research area is in corporate finance, investment appraisal, and corporate governance.

e-mail: gwang@cc.kuas.edu.tw