Development of Coronal Field and Solar Wind Components for MHD Interplanetary Simulations

Ljubomir Nikolić, Larisa Trichtchenko

Abstract—The connection between solar activity and adverse phenomena in the Earth’s environment that can affect space and ground based technologies has spurred interest in Space Weather (SW) research. A great effort has been put on the development of suitable models that can provide advanced forecast of SW events. With the progress in computational technology, it is becoming possible to develop operational large scale physics based models which can incorporate the most important physical processes and domains of the Sun-Earth system. In order to enhance our SW prediction capabilities we are developing advanced numerical tools. With operational requirements in mind, our goal is to develop a modular simulation framework of propagation of the disturbances from the Sun through interplanetary space to the Earth. Here, we report and discuss on the development of coronal field and solar wind components for a large scale MHD code. The model for these components is based on a potential field source surface model and an empirical Wang-Sheeley-Arge solar wind relation.

Keywords—Space weather, numerical modeling, coronal field, solar wind.

I. INTRODUCTION

The scientific roots of Space Weather (SW) research go back to the first systematic studies of sunspots in the early 17th century, to the discovery of large magnetic needle fluctuations by George Graham in 1724, and to the observation of solar flares in 1859. However, it took more than 100 years from the first evident observation that occurrence of aurora is connected to the disruption of telegraphic services in March 1847, to establish connection between solar activity and phenomena in the Earth’s environment. Important missing links in the Sun-Earth chain were closed by Eugene Parker’s solar wind theory in the 1950’s [1] and discovery of Coronal Mass Ejections (CME) in 1971 [2]. Collapse of Hydro-Quebec power grid in 1989 and the loss of Telstar satellite in 1997 are some examples of the events that spurred research interest in Sun-to-Earth physical processes and their effects. The fact that solar activity can pose a hazard and can have a major impact on modern society has prompted establishment of research and operational strategies to understand and predict SW [3]-[5].

Today, the term “Space Weather” refers to variable conditions in our space environment which can affect human activities, space and ground based technologies. Since human well-being is increasingly dependent on modern technology and on modern society has prompted establishment of research and operational strategies to understand and predict SW [3]-[5].

The current “Space Weather” refers to variable conditions in our space environment which can affect human activities, space and ground based technologies. Since human well-being is increasingly dependent on modern technology and on modern society has prompted establishment of research and operational strategies to understand and predict SW [3]-[5].

Despite the fact that fully physics based simulations, in particular MHD, have been used in academic research since the early 1980s, the implementation of these codes into SW operations poses a challenge, ranging from computational constraints to the lack of observational data that can be used to deduce code-relevant input parameters. Furthermore, the majority of the scientific codes were not designed with operational functionality in mind and thus require significant changes in the code structure. Recently, the ENLIL code [11] has been implemented at NOAA as the first large scale MHD SW operational code [12] that provides 1-4 day advanced warning of shock arrivals. The code uses the WSA model for the background solar wind and a cone model for the CME initiation.

The Canadian Space Weather Center is trying to enhance its prediction capabilities using modern numerical approaches as...
well. With SW operational requirements in mind, our goal is to develop a modular simulation framework for the propagation of solar disturbances through interplanetary space. Modularity of the framework should ensure easy extensions to incorporate new components. Here we report on our efforts and findings on the development of coronal magnetic field and solar wind components that will provide initial parameters for a MHD simulation code. In section 1 we describe the governing equations used to transform observations of photospheric magnetic fields to construct global coronal fields and to determine quantities relevant to an empirical solar wind relation. In section 2 we present and discuss our results, and in section 3 we summarize our work.

II. Governing Equations of the Models

A. Coronal Fields

In this paper we use a potential field source surface model (PFSS) to derive global magnetic field \( \mathbf{B} \) of the solar corona from photospheric magnetic observations [13, 14]. The PFSS model assumes existence of a fixed spherical "source surface" where the coronal magnetic field is purely radial. A radius of \( R_s = 2.5R_0 \) for the source surface, where \( R_0 \) is the radius of the Sun, is widely accepted for the modelling. Although the fixed spherical surface assumption, together with the neglecting of coronal currents, poses a shortcoming of the PFSS model, the more exact solution using MHD approach does not offer significant advantage. It has been found that PFSS and MHD models give similar topology of the coronal magnetic field [15]. However, the PFSS has a significant advantage in respect to complexity and computational time. Here, we outline the main steps to derive the PFSS based solution.

To start, it is assumed that there are no currents in the region \( R_0 \leq r \leq R_s \), which means that the magnetic field can be expressed as the gradient of a scalar potential \( \Psi \)

\[
\nabla \times \mathbf{B} = 0 \quad \Rightarrow \quad \mathbf{B} = -\nabla \Psi, \tag{1}
\]

which with the divergenceless property of the magnetic field

\[
\nabla \cdot \mathbf{B} = 0, \tag{2}
\]

gives Laplace equation for the potential

\[
\nabla^2 \Psi = 0. \tag{3}
\]

Using the separation of variables \( \Psi(r, \theta, \phi) = R(r) \Theta(\theta) \Phi(\phi) \) in the spherical coordinates, where \( \theta \in [0, \pi] \) and \( \phi \in [0, 2\pi] \), and assuming that at the source surface \( r = R_s \) the magnetic field is radial, i.e. \( \Psi(R_s, \theta, \phi) = \text{const.} \), we can express the solution of (3) in the region \( R_0 \leq r \leq R_s \) in terms of spherical harmonics as

\[
\Psi = \sum_{n=1}^{\infty} \sum_{m=-n}^{n} P_n^m(\cos \theta)(g_{nm} \cos m\phi + h_{nm} \sin m\phi) \times \left[ \frac{R_0}{r} \right]^{n+1} - \frac{R_0}{R_s} \left( \frac{R_0}{R_s} \right)^{n+2} \left( \frac{r}{R_s} \right)^n. \tag{4}
\]

Using (1) and (4) we can obtain the magnetic field components:

\[
B_r = \frac{1}{r} \frac{\partial \Psi}{\partial r} = \sum_{n=1}^{\infty} \sum_{m=0}^{n} P_n^m(\cos \theta) \times (g_{nm} \cos m\phi + h_{nm} \sin m\phi) \times \left[ (n+1) \left( \frac{R_0}{r} \right)^{n+2} + n \left( \frac{R_0}{R_s} \right)^{n+2} \left( \frac{r}{R_s} \right)^n \right], \tag{5}
\]

\[
B_\theta = \frac{1}{r \sin \theta} \frac{\partial \Psi}{\partial \theta} = \sum_{n=1}^{\infty} \sum_{m=0}^{n} \frac{\partial P_n^m(\cos \theta)}{\partial \theta} \times (g_{nm} \cos m\phi + h_{nm} \sin m\phi) \times \left[ \left( \frac{R_0}{r} \right)^{n+2} - \frac{R_0}{R_s} \left( \frac{R_0}{R_s} \right)^{n+2} \left( \frac{r}{R_s} \right)^n \right], \tag{6}
\]

\[
B_\phi = -\frac{1}{r \sin \theta} \frac{\partial \Psi}{\partial \phi} = \sum_{n=1}^{\infty} \sum_{m=0}^{n} \frac{m}{\sin \theta} P_n^m(\cos \theta) \times (g_{nm} \sin m\phi + h_{nm} \cos m\phi) \times \left[ \left( \frac{R_0}{r} \right)^{n+2} - \frac{R_0}{R_s} \left( \frac{R_0}{R_s} \right)^{n+2} \left( \frac{r}{R_s} \right)^n \right]. \tag{7}
\]

where \( P_n^m(\cos \theta) \) represent the associated Legendre polynomials. Multiplying (5) with \( P_k^l(\cos \theta) \cos l\phi \) and \( P_k^l(\cos \theta) \sin l\phi \) in the case \( r = R_0 \), the coefficients \( g_{nm} \) and \( h_{nm} \) in (4)-(7) can be found using orthogonality of the Legendre polynomials

\[
\int_0^\pi \sin \theta d\theta \int_0^{2\pi} d\phi P_n^m(\cos \theta) \left\{ \begin{array}{c} \cos m\phi \\ \sin m\phi \end{array} \right\} = \frac{4\pi}{2n+1} \delta_{nk} \delta_{ml}, \tag{8}
\]

where we use Schmidt normalization. Thus we have

\[
\left\{ \begin{array}{c} g_{nm} \\ h_{nm} \end{array} \right\} = \frac{2n+1}{4\pi} \left\{ \begin{array}{c} 0 \\ \delta_{n1} \end{array} \right\} \int_0^\pi \sin \theta d\theta \int_0^{2\pi} d\phi B_r(R_0, \theta, \phi) P_n^m(\cos \theta) \left\{ \begin{array}{c} \cos m\phi \\ \sin m\phi \end{array} \right\}. \tag{9}
\]

Since the radial component of the photospheric magnetic field \( B_r(R_0, \theta, \phi) \) in (9) can be derived from the solar magnetograms, using (5)-(7) we can now construct magnetic field in the region \( R_0 \leq r \leq R_s \). To expand the fields beyond the source surface \( R_s \), one can utilize the Schatten current sheet model [16].

B. Solar Wind

Two parameters that can be calculated from the coronal field play an important role in the solar wind speed \( V_{sw} \). It has been found [7], [8] (WSA model), that the flux tube expansion factor

\[
f_s = \left| \frac{\mathbf{B}(R_0)}{\mathbf{B}(R_s)} \right|^2 \tag{10}
\]

and the angular separation between a magnetic field foot point and the coronal hole boundary \( \theta_h \) at the photosphere, are well
correlated with the solar wind speed. There are several forms of empirical relations that connect $f_s$ and $\theta_s$ with $V_{sw}$. A general form of the relation can be expressed \cite{17} as,

$$V_{sw} \left[ \frac{\text{km}}{\text{s}} \right] = a_1 + \frac{a_2}{(1 + f_s)^{a_3}} \left[ a_4 - a_5 \exp \left\{ - \left( \frac{\theta_s}{a_6} \right)^{a_7} \right\} \right]^{a_8},$$

where $a_1$-$a_8$ are empirical numerical coefficients. These coefficients are tunable parameters that depend on the magnetogram source used to derive the coronal magnetic field, resolution, radius of the surface where the solar wind is calculated, etc.

### III. RESULTS AND DISCUSSION

We have developed a modular numerical Fortran code for the magnetogram processing and calculation of the coronal field based on the PFSS model. As the input to the code, we use synoptic magnetograms to obtain the observed radial component of the magnetic field. There are several sources of full rotation maps of the photospheric field. In this paper we use hourly-updated standard GONG synoptic magnetograms \cite{18}. These magnetograms are provided in the FITS format with the $180 \times 360 \sin(\theta) - \phi$ grid. Here $\theta$ denotes the latitude and $\phi$ represents the longitude.

With the help of cfitsio library \cite{19} for reading the files, we remesh the magnetograms to a uniform latitude-longitude grid. In Fig. 1 we show a GONG hourly-updated classic synoptic magnetogram. To better represent the details, the magnetic field scale is saturated at $\pm 50 \text{G}$. The region on the left side of the central meridian is towards the east of the Sun. The region on the left side of the central meridian corresponds to the central meridian on February 23, 2012 (14:04 UT). The left side from the central meridian is towards the east of the Sun. The magnetic field scale is saturated at $\pm 50 \text{G}$.

![Fig. 1. Observed photospheric radial component of the magnetic field $B_r(R_0, \theta, \phi)$ from the GONG synoptic magnetogram. The longitude $0^\circ$ corresponds to the central meridian on February 23, 2012 (14:04 UT). The left side from the central meridian is towards the east of the Sun. The region on the left side of the central meridian corresponds to the central meridian on February 23, 2012 (14:04 UT). The left side from the central meridian is towards the east of the Sun.](image)

Using $B_r(R_0)$ from this synoptic map we can obtain harmonic coefficients $g_{nm}$ and $h_{nm}$. To calculate this we use a discretized form of (9). We note that the discretization is limited by the magnetogram resolution. We have compared our calculated harmonic coefficients with Luhmann’s coefficients \cite{18} and a good agreement has been found.

The radial magnetic field (5) obtained using harmonic expansion should match the magnetic field of the original magnetogram (Fig. 1) for $r = R_0$. In Fig. 2 we show the results of the calculation of $B_r(R_0, \theta, \phi)$ with a different number of harmonics limited by $n \leq n_{max}$. In a number of PFSS magnetic field derivations a low number of harmonics has been used (typically $n_{max} < 20$). However, as we can see from the comparison of Fig. 1 and Fig. 2, the fine details are blurred for $n_{max} = 20$ (Fig. 2a), and the result does not represent well the observed field. Another problem which is not so apparent in Fig. 2a is clearly visible in Fig. 2b. This known effect is induced by a large abrupt difference in the observed magnetic field intensity in the active regions (see \cite{20}). Therefore, the ringing effect is more pronounced on magnetograms with strong active regions than in the case of “quiet” magnetograms. Using more harmonics can decrease the artifacts. As we can see from Fig. 3 using $n_{max} = 120$ we can reproduce the original magnetogram from

![Fig. 2. Photospheric radial component of the magnetic field $B_r(R_0, \theta, \phi)$ calculated with (a) $n_{max} = 20$, (b) $n_{max} = 60$, and (c) $n_{max} = 120$. The magnetic field scale is saturated at $\pm 50 \text{G}$.](image)
Using the PFSS equations (5)-(7) we can now derive a full 3D coronal magnetic field. In Fig. 3 we show the result for the magnetic field calculated with \( n_{\text{max}} = 120 \) to minimize the ringing effect. We use magnetogram from Fig. 1 as the input for the code. In Fig. 3a and 3b, we show a photospheric map of \( B_\theta \) and \( B_\phi \), respectively, with the magnetic field scale saturated at ±50G. In Fig. 3c we plot the solution for the radial component of the magnetic field \( B_r \) at the source surface \( R_s \). The calculated \( B_\theta \) and \( B_\phi \) components vanish at \( R_s \), in agreement with the definition of the source surface.

Once the distribution of the magnetic field in the solar corona is known, we can trace the magnetic field lines using the following equations:

\[
\frac{dr}{ds} = \frac{B_r}{B},
\]

Fig. 4. (a) Magnetic flux tube expansion factor \( f_s \), (b) nearest coronal hole boundary factor \( \theta_b \), and (c) solar wind speed \( V_{sw} \) at \( R_s \). The synoptic magnetogram used as the input for the code is from June 14, 2012 (15:04UT).

Fig. 5. Solar wind speed from ACE satellite measurements [21], for June 1-18, 2012.
\[ \frac{r d\theta}{ds} = \frac{B_\theta}{B} , \]
\[ \frac{r \sin \theta d\phi}{ds} = \frac{B_\phi}{B} , \]

where \( ds \) is a segment along the field line. Starting from the source surface, we use a fourth-order Runge-Kutta method to trace open magnetic field lines \( B(R) \). We find the corresponding foot point \( B(R_0) \) of an open field line to obtain the flux tube expansion factor \( f_\phi \) and separation between open field foot point and its nearest coronal hole boundary \( \theta_0 \). Using the synoptic magnetogram for June 14, 2012 (15:04UT) as the input and with resolution of the computation set to \( 2.5^\circ \times 2.5^\circ \), we calculated \( f_\phi \) (Fig. 4a) and \( \theta_0 \) (Fig. 4b). We can associate the solar wind speed to the points at the solar surface using corresponding values for \( f_\phi \) and \( \theta_0 \) (11). For the empirical coefficients in (11) we use \( a_1 = 240 \), \( a_2 = 675 \), \( a_3 = 1/4.5 \), \( a_4 = 1 \), \( a_5 = 0.8 \), \( a_6 = 2.8 \), \( a_7 = 1.25 \) and \( a_8 = 3 \) [17]. The result for the solar wind speed is shown in Fig. 4c.

To test the result for the solar wind, in Fig. 5 we plot the solar wind speed observed by the ACE satellite at the L1 point for June 1-18, 2012 [21]. Taking into account that 1 day corresponds to \( 13.2^\circ \) in the longitude and accounting for the transition time of the solar wind from \( R_0 \) to L1 point, we see that the region of the high solar wind speed (\( \sim 700 \text{km/s} \)) in Fig. 4c at \( \phi \sim 150^\circ \), corresponds to the high solar wind speed (\( \sim 700 \text{km/s} \)) observed around June 6 by the ACE satellite.

We should point out that the original WSA solar wind model [7], [8] uses a simple 1D kinematic relation to propagate the solar wind through the interplanetary space, taking into account overtaking between fast and slow solar wind streams. The WSA prediction of the solar wind can be quite satisfactory during the Sun’s quiet period, however, the model often fails to provide satisfactory predictions during periods of increased activity. The reason for this is that the model does not employ a physics based model of the solar wind stream interaction. Moreover, the model does not account for the fast disturbances. To illustrate this, in Fig. 5 we can see two shocks on June 16 due to two CMEs that erupted on June 13 (12:48UT) and June 14 (14:36UT). Although the CMEs were not Earth directed they generated a modest increase in solar wind speed. However, as one can see, no features associated with this event are present in Fig. 4.

To propagate plasma streams through interplanetary space and to predict shock arrival times of the solar disturbances a large scale MHD model would be appropriate. We are developing a MHD code (similar to ENLIL), where the components used to calculate the coronal field and the solar wind speed in this paper will provide input values at the inner code boundary. Once the MHD propagation code is included in the framework, the fine tuning of empirical coefficients in (11) will be done to best match observations. Furthermore, to take into account the most violent solar disturbances, a CME model will be coupled with the MHD code.

### IV. Conclusion

In this paper we presented numerical results based on PFSS coronal field and WSA solar wind models. A good agreement of the results with the observations was found. We plan to couple the developed numerical codes into a framework with an interplanetary MHD and a CME model to simulate propagation of CMEs in the background solar wind.

### Acknowledgment

This work utilizes data obtained by the Global Oscillation Network Group (GONG) Program, managed by the National Solar Observatory, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation. The data were acquired by instruments operated by the Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofisica de Canarias, and Cerro Tololo Interamerican Observatory. This work was performed as part of Natural Resources Canada’s Public Safety Geoscience program with additional support from the Canadian Space Agency.

### References