Banach lattices with weak Dunford-Pettis property

Khalid Bouras and Mohammed Moussa

Abstract—We introduce and study the class of weak almost Dunford-Pettis operators. As an application, we characterize Banach lattices with the weak Dunford-Pettis property. Also, we establish some sufficient conditions for which each weak almost Dunford-Pettis operator is weak Dunford-Pettis. Finally, we derive some interesting results.

Keywords—weak almost Dunford-Pettis operator, almost Dunford-Pettis set, weak Dunford-Pettis operator, weak Dunford-Pettis set. A norm bounded subset A of Banach space F is said to be weak Dunford-Pettis if every weakly compact operator defined on E (and taking their values in a Banach space F) is weak Dunford-Pettis (respectively, almost Dunford-Pettis, that is, the sequence $(\|T(x_n)\|)$ converges to 0 for every weakly null sequence (x_n) consisting of pairwise disjoint elements in E).

I. INTRODUCTION AND NOTATION

As many Banach spaces do not have the Dunford-Pettis property, a weak notion is introduced, called the weak Dunford-Pettis property. A Banach space (respectively, Banach lattice) E has the Dunford-Pettis (respectively, weak Dunford-Pettis) property if every weakly compact operator defined on E (and taking their values in a Banach space F) is Dunford-Pettis (respectively, almost Dunford-Pettis, that is, the sequence $(\|T(x_n)\|)$ converges to 0 for every weakly null sequence (x_n) consisting of pairwise disjoint elements in E).

On the other hand, whenever Aliprantis-Burkinshaw [1] and Kalton-Saab [4] studied the domination property of Dunford-Pettis operators, they used the class of weak Dunford-Pettis operators which satisfies the domination property [4]. Let us recall from [2] that an operator T from a Banach space X into another Y is said to be weak Dunford-Pettis if the sequence $(f_n(T(x_n)))$ converges to 0 whenever (x_n) converges weakly to 0 in X and (f_n) converges weakly to 0 in Y. Alternatively, T is weak Dunford-Pettis if T maps relatively weakly compact sets of X into Dunford-Pettis sets of Y (see Theorem 5.99 of [2]). A norm bounded subset A of a Banach lattice E is said to be weak Dunford-Pettis if every weakly null sequence (f_n) of E converges uniformly to zero on the set A, that is, $\sup_{x \in A} |f_n(x)| \to 0$ (see Theorem 5.98 of [2]).

In [3], we introduced a new class of sets we call almost Dunford-Pettis set. A norm bounded subset A of a Banach lattice E is said to be almost Dunford-Pettis set if every disjoint weakly null sequence (f_n) of E' converges uniformly to zero on the set A, that is, $\sup_{x \in A} |f_n(x)| \to 0$.

As weak Dunford-Pettis operators, we introduce a new class of operators that we call weak almost Dunford-Pettis operator. An operator T from a Banach space X into a Banach lattice F is said to be weak almost Dunford-Pettis if T maps relatively weakly compact sets of X into weak Dunford-Pettis sets of F.

II. MAIN RESULTS

Recall from [5] that an operator from a Banach lattice E into a Banach space X is said to be almost Dunford-Pettis if the sequence $(\|T(x_n)\|)$ converges to 0 for every weakly null sequence (x_n) consisting of pairwise disjoint elements in E.
The following result gives a characteristics of weak almost Dunford-Pettis operators from a Banach space into a Banach lattice in term of weakly compact operators and the adjoint of almost Dunford-Pettis operators.

Theorem 2.1: For an operator T from a Banach space X into a Banach lattice F, the following statements are equivalent:

1) T is weak almost Dunford-Pettis operator.

2) If S is a weakly compact operator from an arbitrary Banach space Z into X, then the adjoint of the operator product $T \circ S$ is almost Dunford-Pettis.

3) If S is a weakly compact operator from ℓ^1 into X, then the adjoint of the operator product $T \circ S$ is almost Dunford-Pettis.

4) For all weakly null sequence $(x_n)_{n \in \mathbb{N}} \subset X$, and for all disjoint weakly null sequence $(f_n)_{n \in \mathbb{N}} \subset F^*$ it follows that $f_n(T(x_n)) \rightarrow 0$.

Proof: (1) \Rightarrow (2) Let (f_n) be a disjoint weakly null sequence in F^*, we have to prove that $|f_n(T(x_n))| \rightarrow 0$, which is impossible with $|f_n(T(x_n))| > \varepsilon$ for all n. Thus, the sequence $|(T \circ S)'(f_n)|$ converges to 0 for the norm of Z'.

5) Then $|f_n(T(x_n))| \rightarrow 0$.

6) The sequence $(S((\lambda_i)_{i=1}^\infty))_{i=1}^\infty$ is weakly compact (Theorem 5.26 of [2]), so by our hypothesis $(T \circ S)'(f_n)$ is an almost Dunford-Pettis operator. Thus $|(T \circ S)'(f_n)| \rightarrow 0$ and the desired conclusion follows from the inequality

$$|f_n(T(x_n))| \leq \sup_{\lambda \in B_1} |f_n(T(S((\lambda_i)_{i=1}^\infty)))|$$

for each n, where $(\lambda_i)_{i=1}^\infty$ is the canonical basis of l^1.

(4) \Rightarrow (1) Let W be a relatively weakly compact subset of X, and let (f_n) be a disjoint weakly null sequence in F^*. If (f_n) does not converge uniformly to zero on $T(W)$, then there exist a sequence $(x_n)_{n \in W}$, a subsequence of (f_n) (which we shall denote by (f_n) again), and some $\varepsilon > 0$ satisfying $|f_n(T(x_n))| > \varepsilon$ for all n.

Since W is weakly compact, we can assume that $x_n \rightarrow x$ weakly in X. Then $T(x_n) \rightarrow T(x)$ weakly in F and so, by our hypothesis, we have $0 < \varepsilon < \{f_n(T(x_n))\} \leq |f_n(T(x_n) - x)| + |f_n(T(x))| \rightarrow 0$, which is impossible. Thus, (f_n) converges uniformly to zero on $T(W)$, and this shows that $T(W)$ is an almost Dunford-Pettis set, which ends the proof of the Theorem.

Let us recall that, an operator T from a Banach lattice E into a Banach lattice F is said to be order bounded if for each $z \in E^+$, the set $\{T([-z,z])\}$ is order bounded set in F. An operator T from a Banach lattice E into a Banach lattice F is said to be regular if it can be written as a difference of two positive operators. Note that, every regular operator is order bounded but an order bounded operator is not necessary regular (see [2], Example 1.16, p. 13).

Remark 2.2: Each order interval $[-z,z]$ of a Banach lattice E is an almost Dunford-Pettis set for each $z \in E^+$. In fact, if (f_n) be a disjoint weakly null sequence in E', then by Remark 1 of Wnuk [5], (f_n) is a disjoint weakly null sequence in E'. Hence $\sup_{x \in [-z,z]} |f_n(x)| = |f_n(z)| \rightarrow 0$ for each $z \in E^+$.

As a consequence, if $T : E \rightarrow F$ is an order bounded operator from a Banach lattice E into another F, then $T([-z,z])$ is an almost Dunford-Pettis set in F, and then $|f_n \circ T|(z) = \sup_{x \in [-z,z]} |f_n(x)| \rightarrow 0$ for each $z \in E^+$.

We will need the following characterizations, which are just Theorem 2.4 of [3].

Theorem 2.3: [3] Let $T : E \rightarrow F$ be an order bounded operator from a Banach lattice E into another Banach lattice F, and let A be a norm bounded solid subset of E. The following statements are equivalent:

1) $T(A)$ is an almost Dunford-Pettis set.

2) $\{T(x_n), n \in \mathbb{N}\}$ is an almost Dunford-Pettis set for each disjoint sequence $(x_n)_{n \in \mathbb{N}}$ in $A^+ = A \cap E^+$.

3) $f_n(T(x_n)) \rightarrow 0$ for each disjoint sequence $(x_n)_{n \in \mathbb{N}}$ in A^+ and for every disjoint weakly null sequence $(f_n)_{n \in \mathbb{N}}$ of E'.

Proof: (1) \Rightarrow (2) Obvious.

(2) \Rightarrow (3) Obvious.

(3) \Rightarrow (1) To prove that $T(A)$ is an almost Dunford-Pettis set, it suffice to show that $\sup_{x \in A} |f_n(T(x))| \rightarrow 0$ for every disjoint weakly null sequence (f_n) of F'. Otherwise, there exists a sequence $(f_n) \in E'$ satisfying $\sup_{x \in A} |f_n(T(x))| > \varepsilon$ for some $\varepsilon > 0$ and all n. For every n there exists $x_n \in A^+$ such that $|T(f_n)(x_n)| > \varepsilon$. Since $|T(f_n)(x_n)| \rightarrow 0$ for every $z \in E^+$ (see Remark 2.2), then by an easy inductive argument shows that there exist a subsequence (y_n) of (x_n) and a subsequence (g_n) of (f_n) such that

$$|T'(g_{n+1})(y_{n+1})| > \varepsilon$$

and $|T'(g_{n+1})(y_{n+1})| |n| < \frac{1}{n}$ for all $n \geq 1$. Put $x = \sum_{i=1}^\infty 2^{-i} y_i$ and $x_n = (y_{n+1} - 4^n \sum_{i=1}^n y_i - 2^{-n} x)$. By Lemma 4.35 of [2] the sequence $(x_n)_{n \in \mathbb{N}}$ is disjoint. Since $0 \leq x_n \leq y_{n+1}$ for every n, and $(y_{n+1})_{n \in \mathbb{N}}$ in A^+ then $(x_n)_{n \in \mathbb{N}}$ in A^+.

From the inequalities

$$|T'(g_{n+1})(y_{n+1})| \geq |T'(g_{n+1})(y_{n+1} - 4^n \sum_{i=1}^n y_i - 2^{-n} x)|$$

$$\geq \varepsilon - \frac{1}{n} - 2^{-n} |T'(g_{n+1})(y_{n+1})|$$

for all $n \geq 1$. This contradicts the fact that (y_n) is disjoint, and so the sequence (y_n) is a subsequence of (x_n) which is weakly null in E^+.

International Scholarly and Scientific Research & Innovation 5(2) 2011 175

ISNI:0000000091590263
we see that $|T'(g_{n+1})| (x) > \frac{2}{\varepsilon}$ must hold for all n sufficiently large (because $2^{-n} |T'(g_{n+1})| (x) \rightarrow 0$).

In view of $|T'(g_{n+1})| (x) = \sup_{z \in E} |g_{n+1} (T(z))| : |z| \leq x$, for each n sufficiently large there exists some $z_n \in E$ with $|g_{n+1} (T(z_n))| > \frac{2}{\varepsilon}$. Since (z_n') and (z_n') are both norm bounded disjoint sequence in A^+, it follows from our hypothesis that

$$\varepsilon < |g_{n+1} (T(z_n))| \leq |g_{n+1} (T(z'_n))| + |g_{n+1} (T(z_n'))| \rightarrow 0$$

which is impossible. This proves that $T(A)$ is an almost Dunford-Pettis set.

For ordered bounded operators between two Banach lattices, we give a characterization of weak almost Dunford-Pettis operators.

Theorem 2.4: Let T be an ordered bounded operator from a Banach lattice E into another F. Then the following assertions are equivalent:

1) T is weak Dunford-Pettis operator.

2) $f_n (T(x)) \rightarrow 0$ for all weakly null sequence (x_n) in E consisting of pairwise disjoint terms, and for all weakly null sequence (f_n) in F' consisting of pairwise disjoint terms.

Proof: (1) \Rightarrow (2) Obvious.

(2) \Rightarrow (1) Let (x_n) be a weakly null sequence in E, and let (f_n) be a disjoint null sequence in F'. We have to prove that $f_n (T(x_n)) \rightarrow 0$.

Let A be the solid hull of the weakly relatively compact subset $\{x_n, n \in N\}$ of E, by Theorem 4.34 of [2], $(x_n) \rightarrow 0$ weakly for each disjoint sequence (z_n) in A^+ and so, by our hypothesis, we have $g_n (T(z_n)) \rightarrow 0$ for each disjoint weakly null sequence (g_n) in F' and for each disjoint sequence (z_n) in A^+, then Theorem 2.3, implies that $T(A)$ is an almost Dunford-Pettis set, and hence $\sup_{y \in T(A)} \|f_n (y)\| \rightarrow 0$.

Therefore,

$$|f_n (T(x_n))| \leq \sup_{x \in A} |f_n (T(x))| \leq \sup_{y \in T(A)} \|f_n (y)\| \rightarrow 0$$

holds and the proof is finished.

Now for positive operators between two Banach lattices, we give other characterizations of weak almost Dunford-Pettis operators.

Theorem 2.5: Let E and F be two Banach lattices. For every positive operator T from E into F, the following assertions are equivalent:

1) T is weak Dunford-Pettis.

2) If S is a weakly compact operator from an arbitrary Banach space Z into E, then the adjoint of the operator product $T \circ S$ is almost Dunford-Pettis.

3) If S is a weakly compact operator from ℓ^1 into E, then the adjoint of the operator product $T \circ S$ is almost Dunford-Pettis.

4) For all weakly null sequence (x_n) in E, and for all disjoint weakly null sequence (f_n) in F' it follows that $f_n (T(x_n)) \rightarrow 0$.

5) $f_n (T(x_n)) \rightarrow 0$ for every weakly null sequence (x_n) in E' and for all disjoint weakly null sequence (f_n) in F'.

6) $f_n (T(x_n)) \rightarrow 0$ for all weakly null sequence (x_n) in E consisting of pairwise disjoint terms, and for all weakly null sequence (f_n) in F' consisting of pairwise disjoint terms.

7) For all disjoint weakly null sequences $(x_n) \subset E^+$, $(f_n) \subset (F')^+$ it follows that $f_n (T(x_n)) \rightarrow 0$.

8) $f_n (T(x_n)) \rightarrow 0$ for every disjoint weakly null sequence (x_n) in E^+ and for all weakly null sequence (f_n) in F'.

9) $f_n (T(x_n)) \rightarrow 0$ for every disjoint weakly null sequence (x_n) in E^+ and for all weakly null sequence (f_n) in $(F')^+$.

10) $f_n (T(x_n)) \rightarrow 0$ for every weakly null sequence (x_n) in E and for all weakly null sequence (f_n) in $(F')^+$.

11) $f_n (T(x_n)) \rightarrow 0$ for every weakly null sequence (x_n) in E^+ and for all weakly null sequence (f_n) in $(F')^+$.

12) $f_n (T(x_n)) \rightarrow 0$ for every weakly null sequence (x_n) in E^+ and for all weakly null sequence (f_n) in $(F')^+$.

Proof: (1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4) Follows from Theorem 2.1.

(6) \Leftrightarrow (4) Follows from Theorem 2.4.

(4) \Leftrightarrow (5) Obvious.

(5) \Rightarrow (6) Let (x_n) be a weakly null sequence in E consisting of pairwise disjoint elements, and let (f_n) be a weakly null sequence in F', consisting of pairwise disjoint elements, it follows from Remark 1 of Wnuk [5] that $x_n^+ \rightarrow 0$ and $x_n^- \rightarrow 0$ weakly in E^+. Hence by (5), $f_n (T(x_n)) = f_n (T(x_n^+)) - f_n (T(x_n^-)) \rightarrow 0$.

(6) \Rightarrow (7) Obvious.

(7) \Rightarrow (8) Assume by way of contradiction that there exists a disjoint weakly null sequence $(x_n) \subset E^+$ and a weakly null sequence $(f_n) \subset F'$ such that $f_n (T(x_n)) \not\rightarrow 0$. The inequality $|f_n (T(x_n))| \leq |f_n (T(x_n))| \not\rightarrow 0$ implies $|f_n (T(x_n))| \not\rightarrow 0$. Then there exists some $\varepsilon > 0$ and a subsequence of $(f_n) (T(x_n))$ (which we shall denote by $(f_n) (T(x_n))$ again) satisfying $|f_n (T(x_n))| > \varepsilon \forall n$.

On the other hand, since $(x_n) \rightarrow 0$ weakly in E, then $T(x_n) \rightarrow 0$ weakly in F. Now an easy inductive argument shows that there exist a subsequence (z_n) of (x_n) and a subsequence (g_n) of (f_n) such that $\forall n \geq 1$

$$|g_n (T(z_n))| > \varepsilon \text{ and } (4^n \sum_{i=1}^{n} |g_i|)(T(z_{n+1})) < \frac{1}{n}$$

Put $h = \sum_{n=0}^{\infty} 2^{-n} |g_n|$ and $h_n = (|g_n| - 4^n \sum_{i=1}^{n} |g_i| - 2^{-n} h)^+$. By Lemma 4.35 of [2] the sequence (h_n) is disjoint. Since $0 \leq h_n \leq |g_n|$ for all $n \geq 1$ and $(g_n) \not\rightarrow 0$ weakly in F' then it follows from Theorem 4.34 of [2] that $(h_n) \not\rightarrow 0$ weakly in F'.

From the inequalities

$$h_n (T(z_{n+1})) \geq (|g_n| - 4^n \sum_{i=1}^{n} |g_i| - 2^{-n} h)(T(z_{n+1}))$$

we see that $h_n (T(z_{n+1})) > \frac{2}{n}$ must hold for all n sufficiently large (because $2^{-n} h(T(z_{n+1})) \rightarrow 0$), which contradicts with our hypothesis (7).

(8) \Rightarrow (9) Obvious.
consisting of pairwise disjoint elements, and let shows that there exist a subsequence for all inequality \(f_n(T(|x_n|)) \leq f_n(T(|x_n|)) \) implies \(f_n(T(|x_n|)) \to 0 \). Then there exists some \(\varepsilon > 0 \) and a subsequence of \(f_n(T(|x_n|)) \) (which we shall denote by \(f_n(T(|x_n|)) \)) again satisfying \(f_n(T(|x_n|)) \to \varepsilon \) for all \(n \).

On the other hand, since \(f_n \to 0 \) weakly in \(F' \), then \(T'(f_n) \to 0 \) weakly in \(E' \). Now an easy inductive argument shows that there exist a subsequence \((x_n) \) of \((|x_n|) \) and a subsequence \((g_n) \) of \((f_n) \) such that \(\forall n \geq 1 \)

\[
T'(g_n)(z_n) > \varepsilon \quad \text{and} \quad T'(g_n+1)(\varepsilon - \sum_{i=1}^{\infty} z_i) < \frac{1}{n}
\]

Put \(z = \sum_{n=1}^{\infty} 2^{-n} z_n \) and \(y_n = (z_{n+1} - \sum_{i=1}^{\infty} z_i - 2^{-n} z) \). By Lemma 4.35 of [2] the sequence \((y_n) \) is disjoint. Since \(0 \leq y_n \leq \varepsilon \) for all \(n \geq 1 \) and \((z_n) \to 0 \) weakly in \(E \), then it follows from Theorem 4.34 of [2] that \((y_n) \to 0 \) weakly in \(E \).

From the inequalities

\[
T'(g_n+1)(y_n) \geq T'(g_n+1)(\varepsilon - \sum_{i=1}^{\infty} z_i - \sum_{i=1}^{\infty} \frac{z}{2^n}) \\
\geq \varepsilon - \frac{1}{n} - 2^{-n} T'(g_n+1)(z)
\]

we see that \(g_{n+1}(T(y_n)) = T'(g_n+1)(y_n) > \varepsilon \) must hold for all \(n \) sufficiently large (because \(2^{-n} T'(g_n+1)(z) \to 0 \)), which contradicts with our hypothesis (9).

(10) \(\implies\) (11) Obvious.

(11) \(\implies\) (6) Let \((x_n) \) be a weakly null sequence in \(E \) consisting of pairwise disjoint elements, and let \((f_n) \) be a weakly null sequence in \(F' \), consisting of pairwise disjoint elements, it follows from Remark 1 of Wnuk [5] that \(|x_n| \to 0 \) in \(\sigma(E, E') \), and \(|f_n| \to 0 \) in \(\sigma(F', F'') \). Hence by (11), \(|f_n(T(|x_n|))| \to 0 \). Now, from \(|f_n(T(|x_n|))| \leq |f_n(T(|x_n|))| \) for each \(n \), we derive that \(|f_n(T(|x_n|))| \to 0 \). Thus, (12) \(\implies\) (8) Obvious.

(5) \(\implies\) (12) The proof is similar of the proof (7) \(\implies\) (8).

An application of Theorem 2.5, gives other characterizations of Banach lattices with the weak Dunford-Pettis property.

Corollary 2.6: For a Banach lattice \(E \) the following statements are equivalent:

1) \(E \) has the weak Dunford-Pettis property.
2) The identity operator \(I_E : E \to E \) is weak almost Dunford-Pettis, that is, every relatively weakly compact set of \(E \) is almost Dunford-Pettis set.
3) Every weakly compact operator \(T \) from an arbitrary Banach space \(X \) to \(E \) has an adjoint \(T^* : E' \to X' \) which is almost Dunford-Pettis.
4) Every weakly compact operator \(T : E \to E' \) has an adjoint \(T^* \) which is almost Dunford-Pettis.
5) For all weakly null sequence \((x_n)_n \subset E \), and for all disjoint weakly null sequence \((f_n)_n \subset E' \) it follows that \(f_n(x_n) \to 0 \).
6) \(f_n(x_n) \to 0 \) for every weakly null sequence \((x_n)_n \subset E' \) and for all disjoint weakly null sequence \((f_n)_n \subset E' \).
7) For all disjoint weakly null sequences \((f_n)_n \subset E' \), \((x_n)_n \subset E \) it follows that \(f_n(x_n) \to 0 \).
8) For all disjoint weakly null sequences \((f_n)_n \subset (E')^+ \), \((x_n)_n \subset E^+ \) it follows that \(f_n(x_n) \to 0 \).
9) \(f_n(x_n) \to 0 \) for every disjoint weakly null sequence \((x_n)_n \subset E' \) and for all weakly null sequence \((f_n)_n \subset E' \).
10) \(f_n(x_n) \to 0 \) for every disjoint weakly null sequence \((x_n)_n \subset E' \) and for all weakly null sequence \((f_n)_n \subset (E')^+ \).
11) \(f_n(x_n) \to 0 \) for every weakly null sequence \((x_n)_n \subset E \) and for all weakly null sequence \((f_n)_n \subset (E')^+ \).
12) \(f_n(x_n) \to 0 \) for every weakly null sequence \((x_n)_n \subset E' \) and for all weakly null sequence \((f_n)_n \subset (E')^+ \).
13) \(f_n(x_n) \to 0 \) for every weakly null sequence \((x_n)_n \subset E' \) and for all weakly null sequence \((f_n)_n \subset E' \).

Proof: (1) \(\equiv\) (8) follows from Proposition 1 of Wnuk [5].
(2) \(\equiv\) (3) \(\equiv\) ... \(\equiv\) (13) follows from Theorem 2.5.

The following consequence of Theorem 2.5 gives a sufficient conditions under which the class of positive weak almost Dunford-Pettis operators coincide with that of positive weak Dunford-Pettis operators.

Corollary 2.7: Let \(E \) and \(F \) be two Banach lattices. Then each positive weak almost Dunford-Pettis operator from \(E \) into \(F \) is weak Dunford-Pettis if one of the following assertions is valid:

1) The lattice operation of \(E \) are weak sequentially continuous;
2) The lattice operation of \(F' \) are weak sequentially continuous.

Proof: (1) Assume that \(T : E \to F \) is a positive weak almost Dunford-Pettis operator. Let \((x_n) \) be a weakly null sequence in \(E \), and let \((f_n) \) be a weakly null sequence in \(F' \). We have to prove that \(f_n(T(x_n)) \to 0 \).

Since the lattice operation of \(E \) are weak sequentially continuous, then the positive sequences \((x_n^+) \) and \((x_n^-) \) converge weakly to zero. Thus, Theorem 2.5 (12) imply that

\[
f_n(T(x_n^+)) \to 0 \quad \text{and} \quad f_n(T(x_n^-)) \to 0.
\]

Finally, from \(f_n(T(x_n)) = f_n(T(x_n^+)) = f_n(T(x_n^-)) \) for each \(n \), we conclude that \(f_n(T(x_n)) \to 0 \). This shows that \(T \) is weak Dunford-Pettis.

(2) Assume that \(T : E \to F \) is a positive weak almost Dunford-Pettis operator. Let \((x_n) \) be a weakly null sequence in \(E \), and let \((f_n) \) be a weakly null sequence in \(F' \). We have to prove that \(f_n(T(x_n)) \to 0 \).

Since the lattice operation of \(F' \) are weak sequentially continuous, then the positive sequences \((f_n^+) \) and \((f_n^-) \) converge weakly to zero. Thus, Theorem 2.5 (10) imply that

\[
f_n^+(T(x_n)) \to 0 \quad \text{and} \quad f_n^-(T(x_n)) \to 0.
\]

Finally, from \(f_n(T(x_n)) = f_n(T(x_n^+)) = f_n(T(x_n^-)) \) for each \(n \), we conclude that \(f_n(T(x_n)) \to 0 \). This shows that \(T \) is weak Dunford-Pettis.

The preceding Corollary, gives a sufficient conditions under which the weak Dunford-Pettis property and the Dunford-Pettis property coincide.

Corollary 2.8: Let \(E \) be a Banach lattice. Then \(E \) has the Dunford-Pettis property if and only if it has the weak Dunford-Pettis property, if one of the following assertions is valid:
1) The lattice operation of E are weak sequentially continuous;
2) The lattice operation of E' are weak sequentially continuous.

Our consequence of Theorem 2.5 we obtain the domination property for weak almost Dunford-Pettis operators.

Corollary 2.9: Let E and F be two Banach lattices. If S and T are two positive operators from E into F such that $0 \leq S \leq T$ and T is weak almost Dunford-Pettis operator, then S is also weak almost Dunford-Pettis operator.

Proof: Let $(x_n)_n$ be a weakly null sequence in E^+ and $(f_n)_n$ be a weakly null sequence in $(F')^+$. According to (11) of Theorem 2.5, it suffices to show that $f_n(S(x_n)) \to 0$. Since T is weak almost Dunford-Pettis, then Theorem 2.5 implies that $f_n(T(x_n)) \to 0$. Now, by using the inequalities $0 \leq f_n(S(x_n)) \leq f_n(T(x_n))$ for each n, we see that $f_n(S(x_n)) \to 0$.

Now, we look at the duality property of the class of positive weak almost Dunford-Pettis operators.

Theorem 2.10: Let E and F be two Banach lattices and let T be a positive operator from E into F. If the adjoint T' is weak almost Dunford-Pettis from F' into E', then T itself is weak almost Dunford-Pettis.

Proof: Let $(x_n)_n$ be a weakly null sequence in E^+, and let $(f_n)_n$ be a weakly null sequence in $(F')^+$. We have to prove that $f_n(T(x_n)) \to 0$.

Let $\tau : E \to E''$ be the canonical injection of E into its topological bidual E''. Since τ is a lattice homomorphism, the sequence $(\tau(x_n))$ is weakly null in $(E'')^+$. And as the adjoint T' is weak almost Dunford-Pettis from F' into E', we deduce by Theorem 2.1 that $\tau(x_n)(T'(f_n)) \to 0$. But $\tau(x_n)(T'(f_n)) = T'(f_n)(x_n) = f_n(T(x_n))$ for each n. Hence $f_n(T(x_n)) \to 0$ and this ends the proof.

We end this paper by a consequence of Theorem 2.10, we obtain Proposition 2 of Wnuk [5].

Corollary 2.11: Let E be a Banach lattice. If E' has the weak Dunford-Pettis property, then E itself has the weak Dunford-Pettis.

REFERENCES