Structural and Electronic Characterization of Supported Ni and Au Catalysts used in Environment Protection Determined by XRD, XAS and XPS methods

N. Aldea, V. Rednic, F. Matei, Tiandou Hu and M. Neumann

Abstract—The nickel and gold nanoclusters as supported catalysts were analyzed by XAS, XRD and XPS in order to determine their local, global and electronic structure. The present study has pointed out a strong deformation of the local structure of the metal, due to its interaction with oxide supports. The average particle size, the mean squares of the microstrain, the particle size distribution and microstrain functions of the supported Ni and Au catalysts were determined by XRD method using Generalized Fermi Function for the X-ray line profiles approximation. Based on EXAFS analysis we consider that the local structure of the investigated systems is strongly distorted concerning the atomic number pairs. Metal-support interaction is confirmed by the shape changes of the probability densities of electron transitions: Ni K edge (1s → continuum and 2p), Au LIII-edge (2p 3/2 → continuum, 6s, 6d5/2 and 6d7/2). XPS investigations confirm the metal-support interaction at their interface.

Keywords—local and global structure, metal-support interaction, supported metal catalysts, synchrotron radiation, X-ray absorption spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy.

I. INTRODUCTION

Electronic and structural information about the local vicinity around a specific atomic constituent in the amorphous materials [1, 2], the location and chemical state of any catalytic atom on different oxide supports [3] and nanoparticle of transition metal oxides [4-6] can be obtained through X-ray absorption spectroscopy (XAS) technique.

X-ray absorption near edge structure (XANES) is sensitive to local geometries and electronic structure of atoms that constitute the nanoparticles. The changes of the coordination geometry and the oxidation state upon decreasing the crystallite size and the interaction with supports on metal nanoparticles surface can be extracted from XANES spectrum.

Extended X-ray absorption fine structure (EXAFS) is a specific element of the scattering technique in which a core electron ejected by an X-ray photon probes the local environment of the absorbing atom. The ejected photoelectron backscattered by the neighbouring atoms around the absorbing atom interferes constructively with the outgoing electron wave, depending on the energy of the photoelectron.

X-ray diffraction (XRD) line broadening investigations of nanostructured materials is limited to find the average crystallite size from the integral breadth or the full width at half maximum (FWHM) of a diffraction profile. In the case of nanostructured materials due to the difficulty of performing satisfactory intensity measurements on the higher order reflections, it is impossible to obtain two orders of (hkl) profile. Consequently, it is not possible to apply the classical method of Warren and Averbach [7] or the subsequent developed method of Balzar at al., based on Voigt approximation [8]. In this paper we developed a rigorous analysis of the X-ray line profile (XRLP) in terms of Fourier transform where zero strains assumption is not required. The apparatus employed in a measurement generally affects the obtained data and a considerable amount of work has been done to make resolution corrections. In the case of XRLP, the convolution of true data function by the instrumental function produced by a well-annealed sample is described by Fredholm integral equation of the first kind [9]. A rigorous way for solving this equation is Stokes method based on Voigt approximation [8].

In this paper we developed a rigorous analysis of the X-ray line profile (XRLP) in terms of Fourier transform where zero strains assumption is not required. The apparatus employed in a measurement generally affects the obtained data and a considerable amount of work has been done to make resolution corrections. In the case of XRLP, the convolution of true data function by the instrumental function produced by a well-annealed sample is described by Fredholm integral equation of the first kind [9]. A rigorous way for solving this equation is Stokes method based on Voigt approximation [8].

The following catalyst samples were investigated: Ni/Cr2O3 treated at 420 and 650 °C temperatures, Au/MnOx/Al2O3 and Au/Al2O3. The Ni/Cr2O3 catalysts are applied for H/D reaction between hydrogen and water vapour [10]. The supported gold catalysts are used in redaction or oxidation of NO applied in the environment protection [11, 12].
II. EXPERIMENTAL AND DATA PROCESSING

A. Samples preparation

The Ni/Cr2O3 systems treated at 420 and 650 °C temperatures were prepared by coprecipitation method [13]. The precursor materials used for preparation of the supported gold catalysts were HAuCl4 3H2O, urea (NH2)2CO p.a. and γ-Al2O3. Atomic ratio Au:Al was 1:75. The nanosized Au/Al2O3 was prepared by homogeneous deposition-precipitation (HDP) using excess urea as precipitating agent [14]. The Au/MnOx/Al2O3 has been prepared by impregnation under vacuum conditions where atomic ratio Mn:Al was 1:15 [15].

B. Measurement methods

The transmission and fluorescence EXAFS measurements on Ni K and Au LIII edges were carried out on 4W1B beamline in Beijing Synchrotron Radiation Facilities operating at 30-50 mA and 2.2 GeV [16]. The beamline 4W1B is an unfocussed monochromatic X-ray beam with 4 mrad of horizontal acceptance. The X-rays are monochromatized by a fixed exit Si double crystal monochromator. The features of 4W1B beamline are: energy range of 3.5-22 KeV, energy resolution of ΔE = 0.5-2 eV at E = 10 KeV, Bragg angle range of 5-70°, the crystals Si(111), Si(220) and Si(311) can be alternatively used. A Ni and Au foils were used as a standard samples. The absorption coefficients of Ni K and Au LIII edges were determined using a Si (111) double-crystal monochromator.

The absorption coefficients were measured in an energy scale from 8186 to 9331 eV for Ni and 11500 to 12808 eV for Au, respectively. Harmonics were rejected by detuning of the monochromator. Special care was taken in preparation of the samples for measurements, especially for thickness and homogeneity of samples to obtain absorption spectra of good quality. All samples were ground to fine powder and homogeneously dusted on scotch tape. The EXAFS analysis of the absorption coefficient was processed by computer codes EXAFSS1 to EXAFS56 [17] from our library.

The XRD measurements for supported nickel catalysts were realized on beamline 4W1C that is a time-shared branch with beamline 4W1B. The energy resolution is 0.5 eV at 0.154 nm. A NaI(Tl) detector was used, signals were amplified and fed to a single channel analyser (ORTEC 850) and read out by a computer. A silicon powder was used as standard sample for instrumental correction. The XRD measurements range, 2θ, was from 28° to 70°. The X-ray diffraction data for supported gold catalysts were collected using a Rigaku rotating anode setup in Bragg-Brentano geometry with Ni filtered Cu Kα radiation, λ = 1.5406 Å at room temperature. The Fourier transform of the supported nickel and gold catalysts XRLP (111), (200) and (220) as well as (111), (200), (220) and (311), respectively were processed by computer code SIZE developed with Maple software. This computer code is improved version of XRLINE [9] and XRLINE1 [18] computer programs, respectively. Its purpose is to show intermediate processing results in a graphic manner.

The XPS spectra were recorded using a PHI 5600ci ESCA spectrometer with monochromatic Al Kα X-ray radiation (1486.6 eV) at room temperature. The pressure in the ultrahigh vacuum chamber was within the 10⁻¹⁰ mbar range during the measurements. A neutralizer was used in every case due to a charge effect which occurs for non-conducting samples. The binding energy was determined by reference to the C 1s line at 284.8 eV. SimPeak and Unifit computer packages programs were used for data analysis of the XPS spectra. They are globally approximated by the asymmetric Donjac-Sunjic distribution using Levenberg Marquardt algorithm. For background correction we used Shirley and Tougaard algorithm based on mathematical description of the electron transport.

III. RESULTS AND DISCUSSION

A. XANES results

The electronic properties of supported nickel and gold catalysts are evidenced by the XANES analysis of the following electronic transitions: Ni K edge (1s → continuum and 2p), Au LIII-edge (2p3/2 → continuum, 6s, 6d5/2 and 6d3/2). Fig. 1 shows XANES spectra for investigated nanostructured Ni/Cr2O3 sample in the range of -40 up 30 eV as well as the electron transition probability approximations.

![Fig. 1 The experimental and calculated XANES spectrum of Ni K edge for Ni/Cr2O3 treated at 420 °C. The last peak corresponds to the beginning of the EXAFS spectrum](image-url)

The white line, which is due to a mixing process of the electrons of central metal atom with neighbouring oxygen electrons, is not present. This suggests that both Ni and Au active metals are not oxidized. Based on classical theory these electron transition probabilities have been approximated by Cauchy, and arctan distributions [19]. The main parameters are: the threshold energies, the amplitude, the position and the full width at half maximum and their values are also presented in Table I.
The extraction of EXAFS signal is based on the determination of the threshold energy for Ni K and Au LIII edges followed by pre-edge and after-edge background removal with base line fitting using different modelling functions and by absorption coefficients evaluation with 3rd order bell spline functions [17]. The EXAFS signals of supported Ni and Au catalysts were performed in the ranges 15-160 nm⁻¹ and 25-120 nm⁻¹, respectively. In order to obtain the distribution of the atomic distances we calculated the radial distribution function using the classical method [2, 20]. The mean Ni-Ni and Au-Au distances of the first and the second coordination shell for standard sample, at room temperature have values close to $R_{\text{Ni}1}=0.249$ nm, $R_{\text{Ni}2}=0.352$ nm, $R_{\text{Au}1}=0.287$ nm and $R_{\text{Au}2}=0.407$ nm. Based on the Fourier transform of EXAFS contribution, performed in the range 0.02-0.5 nm, we obtained the magnitude of the atomic radial distribution for investigated samples as well as for standard Ni and Au foils. In order to reduce the spurious errors due to limited interval in the wave vector space we have taken into consideration the Kaiser window function [17, 21]. Fig. 3 shows the Fourier transform magnitude of the investigated samples.

A. XANES results

The parameters values are reliable because they differ with about one order of magnitude from the value of the experimental resolution. The different values of FWHM, Δ, compared to the standard one confirm the specific strong electronic interaction between the metal and the oxide supports. The threshold energy of XANES spectra of supported gold nanoparticles are moved to lower energy, compared to Au standard sample, with about 4 and 7 eV. The presence of the supports Al₂O₃ and MnOₓ can explain this behaviour. These features are due to strong electron interaction of gold nanocrystallites with surrounded supports. The supported Ni catalysts have also shift the threshold energy of the K edge, but the parameters of the electron transition probabilities are close to those of Ni standard. This is a measure of lower electron interaction of nickel metal nanocrystallites with chromium oxide compared to the supported gold catalysts.

B. EXAFS results

The EXAFS experimental spectra for Au/MnOₓ/Al₂O₃, Au/Al₂O₃ and the gold foil are given in Fig. 2.

The Fourier transform magnitudes are diminished as a result of the reduced average co-ordination number and their peaks are shifted from the true distance due to the phase shift function that is included in the EXAFS signal. The backscattering amplitude and the phase shift functions were obtained by analysing the Ni and Au standard samples using “small perturbation limit” method [21]. Table 2 contains the best fitting values of the local structure parameters: N, R and E_0 of the investigated samples and their uncertainties: ΔN, ΔR and ΔE_0. The extraction of EXAFS signal is based on the determination of the threshold energy for Ni K and Au LIII edges followed by pre-edge and after-edge background removal with base line fitting using different modelling functions and by absorption coefficients evaluation with 3rd order bell spline functions [17]. The EXAFS signals of supported Ni and Au catalysts were performed in the ranges 15-160 nm⁻¹ and 25-120 nm⁻¹, respectively. In order to obtain the distribution of the atomic distances we calculated the radial distribution function using the classical method [2, 20]. The mean Ni-Ni and Au-Au distances of the first and the second coordination shell for standard sample, at room temperature have values close to $R_{\text{Ni}1}=0.249$ nm, $R_{\text{Ni}2}=0.352$ nm, $R_{\text{Au}1}=0.287$ nm and $R_{\text{Au}2}=0.407$ nm. Based on the Fourier transform of EXAFS contribution, performed in the range 0.02-0.5 nm, we obtained the magnitude of the atomic radial distribution for investigated samples as well as for standard Ni and Au foils. In order to reduce the spurious errors due to limited interval in the wave vector space we have taken into consideration the Kaiser window function [17, 21]. Fig. 3 shows the Fourier transform magnitude of the investigated samples.

Table 1: Parameters of the electron transition probabilities (*)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Arctan distribution</th>
<th>Cauchy distributions</th>
<th>EXAFS region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₀ [eV]</td>
<td>Γ_0 [eV]</td>
<td>E₁-E₀ [eV]</td>
</tr>
<tr>
<td>Ni foil 8333.91</td>
<td>30.62</td>
<td>-8.39</td>
<td>7.22</td>
</tr>
<tr>
<td>Ni/Cr₂O₃ 420 C</td>
<td>17.23</td>
<td>-8.38</td>
<td>7.73</td>
</tr>
<tr>
<td>Ni/Cr₂O₃ 650 C</td>
<td>17.68</td>
<td>-8.09</td>
<td>8.52</td>
</tr>
<tr>
<td>LIII edge 2p</td>
<td>3p→continuum</td>
<td>2p→6s</td>
<td>2p→6d₁</td>
</tr>
<tr>
<td>Au foil 11918.0</td>
<td>5.42</td>
<td>2.22</td>
<td>18.04</td>
</tr>
<tr>
<td>Au MnOₓ/Al₂O₃</td>
<td>5.89</td>
<td>-1.55</td>
<td>13.28</td>
</tr>
<tr>
<td>Au Al₂O₃</td>
<td>10.44</td>
<td>-0.32</td>
<td>10.32</td>
</tr>
</tbody>
</table>

(*) E_0 – energy binding of K and LIII edges, Γ_0, Γ_1, Γ_2, Γ_3 – full widths at half maximum
The average interatomic distances obtained for the first coordination shell have practically the same values as those of the standard sample. Fig. 4 shows for the supported gold catalysts calculated and experimental EXAFS signal of the first shell coordination. The relative difference of the average nearest coordination number, between the standard sample and investigated catalysts, were about 16% for Ni-Ni and 58-64% for Au-Au. We have considered that these diminutions of the average nearest-neighbour coordination numbers are due to various degrees of the electron interactions between the active metal and oxide supports [22-24].

C. XRD results

The Fourier analysis of XRPD validity depends strongly on the magnitude and nature of the errors propagated in the data analysis. Young et al treated three systematic errors: uncorrected constant background, truncation and the effect of the sampling for the observed profile at a finite number of points that appear in discrete Fourier analysis [25]. In order to minimize propagation of these systematic errors, a global approximation of the XRPD is adopted instead of the discrete calculus. Therefore, herein the analysis of the diffraction line broadening in X-ray powder pattern was analytically calculated using the generalized Fermi function (GFF) which can have asymmetrical feature [13]. The atomic scattering factor, included in the XRPD, is asymmetric versus diffraction angle and this is why the broad peaks are best fitted by asymmetric GFF distribution. The robustness of the GFF approximation for the XRPD arises from possibility of using the analytical form of Fourier transform instead of a numerical fast Fourier transform (FFT). It is well known that validity of numerical FFT depends on the filtering technique adopted [26]. In this way validity of the microstructural parameters are closely related to accuracy of the Fourier transform magnitude of the true XRPD.

The XRPD for Ni and Au catalysts were analysed. The XRD patterns of the Ni catalysts together with standard sample used for instrumental correction are shown in Fig 5.

The next steps consist in background correction of XRPD by polynomial procedure especially in the tails domain of the profiles. The polynomial approximation is more adequate for small crystallite size determination than a constant background correction because it can avoid the “hook” effect contained in true sample function [27]. The best parameters of GFF distributions were determined by nonlinear least squares fit.

In order to determine the global nanostructure parameters of the investigated samples we computed the Fourier transforms of the true XRPD and integral width [6]. In terms of the classical Scherrer equation [28] the crystallite size is proportional with wavelength, inverse proportional with the product from cosinus of gravity centre of the true sample function and its full width at half maximum.

TABLE II

<table>
<thead>
<tr>
<th>Sample</th>
<th>Coordination number $N_g \Delta N_1$</th>
<th>Shell radius $R_1 \pm \Delta R_1$[nm]</th>
<th>Shift energy $E_0 \pm \Delta E_0$[eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni standard</td>
<td>12</td>
<td>0.249</td>
<td>8333.915±0.03</td>
</tr>
<tr>
<td>Ni/Cr$_2$O$_3$</td>
<td>10.18±0.09</td>
<td>0.2485±0.003</td>
<td>8334.064±0.0196</td>
</tr>
<tr>
<td>Ni/Cr$_2$O$_3$</td>
<td>10.85±0.04</td>
<td>0.2480±0.001</td>
<td>8334.115±0.0503</td>
</tr>
<tr>
<td>Au standard</td>
<td>12</td>
<td>0.287</td>
<td>11917.04±0.04</td>
</tr>
<tr>
<td>Au/MnO$_x$/Al$_2$O$_3$</td>
<td>3.90±0.03</td>
<td>0.284±0.005</td>
<td>11912.22±0.02</td>
</tr>
<tr>
<td>Au/Al$_2$O$_3$</td>
<td>4.98±0.05</td>
<td>0.290±0.006</td>
<td>11908.31±0.03</td>
</tr>
</tbody>
</table>

Fig. 4 The experimental and calculated EXAFS signals of the first coordination shell of Au/MnO$_x$/Al$_2$O$_3$

Fig. 5 The relative intensity XRPD for Ni/Cr$_2$O$_3$, x and # correspond to the Ni and oxide support contributions, respectively. Inset: the XRD spectrum for Si powder used for instrumental correction.

In the Section 3.2 we have shown that the coordination shells radius of the investigated samples have similar values as the nickel and gold foils standard sample. This important result is strongly correlated with the positions of the XRPD from the experimental spectra contained in Fig. 5. Therefore, these results explain metal futures of the investigated clusters despite of strong deformation of the crystalline structure. Hydrogen chemisorptions, transmission electron microscopy, magnetization, electronic paramagnetic resonance
and other methods could also be used to determine grain size of particles by taking into account a prior spherical form for the grains. By XRD method one can obtain the crystallite size that has different values for the different crystallographic planes. There is a large difference between the grain size and crystallite size due to the physical meaning of the two concepts. It is possible that the grains of the active metal are built up of many metal crystallites.

The global structural parameters obtained for the investigated samples are summarized in Table 3.

TABLE III

<table>
<thead>
<tr>
<th>Sample</th>
<th>(111)</th>
<th>(200)</th>
<th>(220)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni85Cr15 at%</td>
<td>D_{(111)} [nm]</td>
<td><ε²_{(111)}></td>
<td>D_{(200)} [nm]</td>
</tr>
<tr>
<td>Ni85Cr15 at% 420°C</td>
<td>10.5</td>
<td>0.2863</td>
<td>11.4</td>
</tr>
<tr>
<td>Ni85Cr15 at% 650°C</td>
<td>36.4</td>
<td>0.0158</td>
<td>47.1</td>
</tr>
<tr>
<td>Au/MnOx/Al2O3</td>
<td>(111)</td>
<td>(200)</td>
<td>(311)</td>
</tr>
<tr>
<td>Au/Al2O3</td>
<td>5.2</td>
<td>3.6</td>
<td>5.6</td>
</tr>
<tr>
<td>Au/MnO</td>
<td>5.5</td>
<td>3.4</td>
<td>5.8</td>
</tr>
</tbody>
</table>

The microstrain parameter, <ε²_{4hkl}>, of the lattice can also be correlated with effective crystallite size, D_{eff}, in the following way: D_{eff} increases when <ε²_{4hkl}> value decreases. The nanocrystallites sizes determined by Scherrer method D_{Sch} are greater than D_{eff} because Scherrer equation do not consider the lattice microstrains. Therefore, the values from Scherrer relation of Table 3 are less reliable than the results from general formula.

D. XPS results

The survey photoemission spectrum of Au/MnOx/Al2O3 catalyst with the identification of the main XPS core level lines is presented in Fig. 6. Besides the spectral features related to the constituent elements of the supported gold catalysts only a weak C 1s peak has been detected. The presence of the C element is due to hydrocarbons absorbed on the surface of the sample powder.

In Fig. 7 the XPS O 1s line is presented. The two contributions from oxide supports MnOx and Al2O3 can be observed.

The Au 4f XPS spectra of the active metal, after background removal, are shown in Fig. 8.
The 4f spectrum is split, due to the spin-orbit coupling, into two peaks corresponding to the Au 4f\textsubscript{7/2} and Au 4f\textsubscript{5/2} states. The binding energy of the Au 4f\textsubscript{7/2} line is shifted to higher binding energy compared to the standard Au foil (84 eV) and has the values 84.5 and 84.9 eV for Au/Al\textsubscript{2}O\textsubscript{3} and Au/MnO\textsubscript{x}/Al\textsubscript{2}O\textsubscript{3}, respectively. This shift can be attributed to the metal-support interaction being correlated with the EXAFS results in the following way: the stronger the metal-support interaction is, local structure is more distorted concerning the diminution in the average nearest coordination number and the shift in the binding energy of the Au 4f\textsubscript{7/2} XPS spectra is bigger. From the previous information based on EXAFS and XRD measurements such as XRLP positions and the values of the first coordination shell, we also evidenced only Au in a metal state. Along with the main lines there are loss peaks that are weaker and broader than the photoelectron peaks and appear in the spectrum at higher binding energy. Their appearance is due to the small crystallite sizes of the investigated samples.

Ni 2p spectra evidenced Ni in both metallic and oxidized states. From previous sections based on EXAFS and XRD measurements we evidenced Ni only in metallic state. The reason why EXAFS and XRD measurements cannot observe the nickel oxide is that these methods determine the crystalline structure from the surfaces of gold nanoclusters and their oxide supports. The conclusions that can be drawn from these studies are:

(i) The reduction of Au-Au and Ni-Ni coordination number from the first coordination shell of the investigated samples point out the existence of a more or less electronic interaction between the metal nanoparticles and the oxide supports.
(ii) For XRLP analysis, a global approximation is applied rather than a numerical Fourier analysis. The former analysis is better than a numerical calculation because it can minimise the systematic errors that can appear in the numerical Fourier analysis and GFF approximation of XRLP describe more accurate the broad asymmetric peaks.
(iii) Our numerical results have showed that by using the GFF distribution we have successfully obtained reliable global nanostructural parameters.
(iv) The XPS measurements confirm the presence, on the surface, of gold metallic states while Ni is in both metallic and oxidized states.
(v) The EXAFS and XPS results of Au supported catalysts are good agreement concerning the strong metal-support interaction.

ACKNOWLEDGMENT

The authors are grateful to BSRF for the beam time and to Dr. Xie Yaning and Dr. Zhonghua Wu for their technical assistance in EXAFS and XRD measurements. The author (N. A.) is also indebted to Professor Hu Tiandou, Director of Institute of High Energy Physics for his hospitality during the stage. This work is the result of the Scientific Cooperation Agreement between our institutes. The authors thank Dr. C. A. Gluhoi for providing the samples used in this work. This work was supported by the research programmers of Romanian Ministry of Education and Research (PN II projects nr. 22098/2008 and 32119/2008).

REFERENCES