An Extension of the Krätzel Function and Associated Inverse Gaussian Probability Distribution Occurring in Reliability Theory

R. K. Saxena and Ravi Saxena

Abstract—In view of their importance and usefulness in reliability theory and probability distributions, several generalizations of the inverse Gaussian distribution and the Krätzel function are investigated in recent years. This has motivated the authors to introduce and study a new generalization of the inverse Gaussian distribution and the Krätzel function associated with a product of a Bessel function of the third kind \(K_v(z) \) and a \(\omega \)-Fox-Wright generalized hyper geometric function introduced in this paper. The introduced function turns out to be a unified gamma-type function. Its incomplete forms are also discussed. Several properties of this gamma-type function are obtained. By means of this generalized function, we introduce a generalization of inverse Gaussian distribution, which is useful in reliability analysis, diffusion processes, and radio techniques etc. The inverse Gaussian distribution thus introduced also provides a generalization of the Krätzel function. Some basic statistical functions associated with this probability density function, such as moments, the Mellin transform, the moment generating function, the hazard rate function, and the mean residue life function are also obtained.

Keywords—Fox-Wright function, Inverse Gaussian distribution, Krätzel function & Bessel function of the third kind.

I. INTRODUCTION

The Krätzel function \(Z^\nu_\rho(x) \) is defined by

\[
Z^\nu_\rho(x) = \int_0^\infty u^{\nu-1} \exp(-xu^\rho - \frac{1}{u}) du ,
\]

\(\rho > 0, \nu \in \mathbb{C}, x > 0 \) \((1) \)

In particular, when \(\rho = 1 \) and \(x = t^2/4 \), then by virtue of [9], it gives

\[
Z_1^\nu\left(\frac{t^2}{4}\right) = 2^{\nu} \left(\frac{t}{2}\right)^\nu K_v(t)
\]

where \(K_v(t) \) is the Bessel function of the third kind or Macdonald function, as in [9].

For \(\rho \geq 1 \) the function (1) was introduced by [20] as a kernel of the integral transform

\[
(K^\rho_f)(x) = \int_0^\infty Z^\nu_\rho(\lambda x)f(\lambda) d\lambda ; \, (x>0)
\]

which is called by his name as the Krätzel function, as in [19], established asymptotic behavior of the function (1) for \(\rho \geq 1 \) together with the composition with a special differential operator. Reference [20] also defined a Bessel-type transform and obtained its properties by using the Mellin transform. This function is recently extended by [17] from \(x>0 \) to complex \(z \in \mathbb{C} \), and its representations in terms of the well-known \(H \)-function are established. The results obtained being different for \(\rho > 0 \) and \(\rho < 0 \) are applied to derive explicit forms of Krätzel function in terms of the Fox-Wright generalized hypergeometric function.

Note 1: We note that the integral (1) occurs in the study of astrophysical thermonuclear functions, which are derived on the basis of Boltzmann- Gibbs statistical mechanics. This integral has been evaluated by [21] by applying the statistical techniques. Recently a short and straightforward analytic proof of this integral is given by [26].

Definition of \(\omega \)-Fox-Wright generalized hypergeometric function: We define the \(\omega \)-Fox-Wright generalized hypergeometric function by means of the Mellin-Barnes type integral in the form

\[
\int_{\gamma-i\infty}^{\gamma+i\infty} \Gamma(b_i) \Gamma(a_i + s) \int_{-1}^{1} \frac{1}{2\pi i} \frac{d\zeta}{\Gamma(a_i + s + \zeta)}
\]

\[
\prod_{j=1}^q \Gamma(b_j) \prod_{i=2}^p \frac{1}{\Gamma(a_i)} \int_{-1}^{1} \frac{d\zeta}{\Gamma(a_i + s + \zeta)} (-z)^s ds
\]

where \(| \arg(-z)| < \pi \) \((\rho = (-1)^{1/2}) \) and the poles of the integrand of (2) are assumed to be simple. The contour \(L \) is one of the contours \(L = L_{-\infty}, L = L_{+\infty} \) and \(L = L_{i\infty} \). These
Theorem 1:

Let \(a, a_1, b, j \in C, A_i, B_j \in (i = 2, \ldots, p; j = 1, \ldots, q) \) be such that the conditions

\[
\frac{a_j + k}{A_j} \neq -\nu, (i = 2, \ldots, p; a_1 = a, A_1 = 1; k, \nu \in N_0)
\]

and

\[
(a_j + k)A_j \neq (a_j + \nu)A_j, (i \neq j; i, j = 1, \ldots, p, a_1 = a, A_1 = 1)
\]

are satisfied. Let \(\mu = \omega(p - q + 1) - 1 \) and either of the following conditions hold:

\[
\mu > -1, \quad z \neq 0; \quad \mu = 1, \quad 0 < z < \beta;
\]

\[
\mu = -1, \quad |z| = \beta, \quad \text{Re} \delta > 1/2
\]

Then the \(\omega \)-Fox-Wright generalized hypergeometric function has the Mellin–Barnes integral representation given by (2), where the path of integration \(\mathcal{L} = \mathcal{L}_{-\infty} \) separates all the poles \(s = \nu(\nu \in N_0) \) to the left and all the poles given by

\[
s = \frac{a_j + \nu}{\omega}
\]

where

\[
\nu \in N_0, \quad \omega \neq 0; a_1 = a \quad \text{with} \quad \omega = 1; i = 1, \ldots, p \quad \text{to the right}.
\]

The theorem readily follows from the result given in [18].

It is interesting to observe that for \(p = 2 \) and \(q = 1 \), the function \(\omega \mathcal{R}_q(z) \) defined by (2) reduces to Dotsenko function, as in [7], and [8], \(\omega \mathcal{R}_1(a, b; c; \omega; z) \), defined by

\[
\omega \mathcal{R}_1(a, b; c; \omega; z) = \frac{\Gamma(c) \Gamma(b)}{\Gamma(a) \Gamma(b)} \left[(a)_1(b, \omega) \right] \left[(c, \omega) \right] \left[(a + b, \omega) \right]
\]

where \(|\arg(-s)| < \pi \) and the poles of the integrand of (5) are assumed to be simple. Here \(\omega \mathcal{R}_1(_\) is a special case of the Fox-Wright generalized hypergeometric function defined by

\[
\omega \mathcal{R}_1(a, b; c; \omega; z) = \frac{\Gamma(c + k) \Gamma(b + k \omega)}{\Gamma(a + k) \Gamma(c + k \omega) \Gamma(k)!(k)!}
\]

It may be noted that the result (4) can be obtained from (5) by calculating the residues at the poles of \(\Gamma(-s) \) at the points given by \(s = \nu \in N_0 \). Reference [8] also obtained the inversion formula for the integral transform and the exact solution of a Fredholm integral equation of the first kind involving such a function in the kernel. It is interesting to observe that for \(\omega = 1 \), (4) reduces to a Gauss hypergeometric function \(\omega F_1(a, b; c; z) \). When \(z \) is replaced by \(za \) and \(a \) tends to infinity, then (4) yields its confluent form as

\[
\frac{\Gamma(c + k) \Gamma(a + b + k \omega)}{\Gamma(a + k) \Gamma(b + k \omega) \Gamma(k)!(k)!}
\]

where \(b, c \in C \);

\[
\text{Re}(\nu > 0, \omega \in \mathbb{R}^+; b + \frac{\omega k}{\mu} c + \frac{\omega}{\mu} \zeta = 0, 1, 2, \ldots)
\]

A generalization of the Krätzel function is introduced and studied by [3]. In the same paper, a generalized inverse Gaussian distribution is also defined and some of its various statistical properties are investigated. A generalization of Krätzel function and associated probability distributions are studied by [25]. In a recent paper, [24] has introduced a generalization of the Krätzel function and inverse Gaussian distribution in the form

\[
S_{a, b, c, \lambda, \nu, p}^{\omega}(z) = \left(\frac{2p}{\pi} \right) \sqrt{t} K_p(\nu t) dt
\]

where \(z, \omega, p > 0, \text{Re} \nu > 0 \).

The object of this paper is to consider a further generalization of the Krätzel function and inverse Gaussian distribution by using the product of \(\omega \)-generalized Fox-Wright hypergeometric function introduced in the next section and the well known Bessel function of the third kind \(K_\nu(x) \) in [1]. This function turns out to be a generalized gamma-type function. Corresponding incomplete functions are introduced and some of their properties are investigated. These functions are employed to define and study a new probability density function. Special cases of the parameters in the result (14) give rise to certain well-known densities. Some statistical properties are also derived. A study of this new function defined by (7) in the next section will give deeper, general and useful results in the theory of special functions, integral transforms and probability distributions, which are useful in reliability theory and diffusion problems.

The following generalized inverse Gaussian distribution is due to [11].
\[f(t) = A(\alpha, a, b) t^{\alpha-1} \exp(-\frac{b}{t}) \cdot a, b, t > 0, \quad -\infty < \alpha < \infty \]

(6)

where, \(A(\alpha; a, b) = \left[\int_0^\infty t^{\alpha-1} \exp(-\frac{b}{t}) dt \right]^{-1} \)

The inverse Gaussian distribution arises as the density of the first passage time of the Brownian motion with positive drift. Such models are used in reliability theory, theory of demographic rates, as in [13, 14]. Applications of the distribution defined by (6) are discussed by [14] in several applied problems, such as fractures of air-conditioning equipment and traffic data etc. A comprehensive account of the inverse Gaussian distribution with applications can be found in [6].

II. A UNIFIED GAMMA-TYPE (KRATZEL) FUNCTION

Definition 1: A unified gamma-type function is defined as

\[
S^{a_{b},...,a_{b},b_{1},...,b_{o},c_{b},v_{b},r_{b},p}(z) = \left(\frac{2p}{\pi} \right)^{1/2} \times
\int t^{(\alpha-1)} K_{\chi}(pt) \cdot R_{q}(a, a_{2},...,a_{p}; b_{1},...,b_{q}; \alpha_{b} - \frac{z}{t^{b_{p}}}) dt
\]

where, \(z, \alpha, \beta, \rho, \gamma > 0, \text{Re}(\rho) > 0 \)

(7)

It is replaced by \(z/\alpha \) and \(\tilde{a} \) tends to infinity in (8), then we arrive at the following result associated with \(\omega \)-confluent hypergeometric function

\[
S^{b_{b},c_{b},d_{b},e_{b},f_{b},g_{b},h_{b},i_{b},j_{b},k_{b},l_{b},m_{b},n_{b},o_{b},p_{b}}(z) = \left(\frac{2p}{\pi} \right)^{1/2} \times
\int t^{(\alpha-1)} K_{\chi}(pt) \cdot R_{q}(a, b, c; \alpha_{b} - \frac{z}{t^{b_{p}}}) dt
\]

where, \(z, \alpha, \beta, \rho > 0, \text{Re}(\rho) > 0 \)

(9)

If we further set \(v = 1/2, \lambda \) is replaced by \(\lambda + 1/2 \), then by virtue of the identity

\[
K_{\lambda+1/2}(x) = \left(\frac{\pi}{2x} \right)^{1/2} \exp(-x),
\]

We obtain the generalized gamma-type function recently studied by [3] in the following form:

\[
S^{b_{b},c_{b},d_{b},e_{b},f_{b},g_{b},h_{b},i_{b},j_{b},k_{b},l_{b},m_{b},n_{b},o_{b},p_{b}}(z) = \left(\frac{2p}{\pi} \right)^{1/2} \times
\int t^{(\alpha-1)} \exp(-pt) \cdot R_{q}(b, c; \alpha_{b} - \frac{z}{t^{b_{p}}}) dt,
\]

(10)

where \(z, \alpha, \rho > 0, \text{Re}(\rho) > 0 \)

Re\((\lambda + \frac{b_{p}}{\omega}) > 0; \omega \neq 0; c + \alpha_{b}, b + \alpha_{b} \neq 0, -1, -2, \ldots \)

B\(^{b_{b},c_{b},d_{b},e_{b},f_{b},g_{b},h_{b},i_{b},j_{b},k_{b},l_{b},m_{b},n_{b},o_{b},p_{b}}(z) \) is the notation for generalized gamma-type function defined by [3].

Next, if we set \(b = c, \alpha = \rho = 1 \), then (10) reduces to the Krätzel function in the notation \(\eta(\rho, 1; z) \) for the Krätzel function employed by [3] as:

\[
Z^{\lambda}(z) = \eta(\rho, 1; \lambda; z) = \int_0^\infty t^{(\alpha-1)} \exp(-t - z t^{-p}) dt
\]

where, \(\text{Re}(\rho) > 0, \text{Re}(z) > 0 \)

Special cases of the generalized function (7):

A. If we set \(v = 1/2 \), we obtain the generalized gamma function

\[
S^{a_{b},...,a_{b},b_{1},...,b_{o},c_{b},v_{b},r_{b},p}(z) = \left(\frac{2p}{\pi} \right)^{1/2} \times
\int t^{(\alpha-1)} \exp(-pt) \cdot R_{q}(a, a_{2},...,a_{p}; b_{1},...,b_{q}; \alpha_{b} - \frac{z}{t^{b_{p}}}) dt
\]

(11)

which for \(p = 2 \) and \(q = 1 \) gives

\[
S^{a_{b},b_{b},c_{b},1,1/2,2,\rho}(z) = \left(\frac{2p}{\pi} \right)^{1/2} \times
\int t^{(\alpha-1)} \exp(-pt) \cdot R_{q}(a, b, c; \alpha_{b} - \frac{z}{t^{b_{p}}}) dt
\]

(12)

where \(\text{Re}(a) > 0, \text{Re}(z) > 0 \)

Re\((\lambda - a_{b}) > 0, \text{Re}(\lambda - b_{b}) > 0, c \neq 0, -1, -2, \ldots \)

If we take \(p = q = \rho = 1 \), \(a = b, b_{1} = c \) in (11), then we obtain the gamma-type function studied by [2]:

\[
S^{b_{b},c_{b},\lambda + 1/2,1/2,2,\rho}(z) = \left(\frac{2p}{\pi} \right)^{1/2} \times
\int t^{(\alpha-1)} \exp(-pt) \cdot R_{q}(b, c; \alpha_{b} - \frac{z}{t^{b_{p}}}) dt
\]

(13)

Note 2: The result (12) also gives the Laplace transform of the Dotsenko function defined by (3).

B. When \(b \) or \(v \) tends to zero in (13), it reduces to a well-known gamma function. Further, if we set \(\rho = \omega = 1, c = b, v = 1/2, \lambda \) is replaced by \(\lambda + 1/2 \) then (9) yields a known result given in [10], pp.146 (2):
where \(\text{Re}(p) > 0, \text{Re}(z) > 0 \)

DERIVATIVES OF THE S-FUNCTION: As a consequence of the definition of the S-function defined by (7) and differential properties of \(\omega - \) Fox-Wright generalized hypergeometric function defined by (2), the following results are easily derived.

A. \[\frac{d}{dz} \left[\sigma S_{\omega, \rho} \right] = -\sigma S_{\omega, \rho} \]

\[= -\sigma \frac{\prod_{j=1}^{p} (\Gamma(b_j) \prod_{i=2}^{p} (\Gamma(a_i + \omega))}{\prod_{j=1}^{p} (\Gamma(a_i) \prod_{i=2}^{p} (\Gamma(b_j + \omega))} \times z^{-\sigma} \times \frac{\prod_{j=1}^{p} (\Gamma(b_j) \prod_{i=2}^{p} (\Gamma(a_i + \omega))}{\prod_{j=1}^{p} (\Gamma(a_i) \prod_{i=2}^{p} (\Gamma(b_j + \omega))} \times \sigma S_{\omega, \rho} \]

B. \[\frac{d}{dz} \left[-\sigma S_{\omega, \rho} \right] = -\sigma \frac{\prod_{j=1}^{p} (\Gamma(b_j) \prod_{i=2}^{p} (\Gamma(a_i + \omega))}{\prod_{j=1}^{p} (\Gamma(a_i) \prod_{i=2}^{p} (\Gamma(b_j + \omega))} \times z^{-\sigma} \times \frac{\prod_{j=1}^{p} (\Gamma(b_j) \prod_{i=2}^{p} (\Gamma(a_i + \omega))}{\prod_{j=1}^{p} (\Gamma(a_i) \prod_{i=2}^{p} (\Gamma(b_j + \omega))} \times \sigma S_{\omega, \rho} \]

C. \[\frac{d}{dz} \left[\sigma S_{\omega, \rho} \right] = \sigma S_{\omega, \rho} \]

\[= \frac{\prod_{j=1}^{p} (\Gamma(b_j) \prod_{i=2}^{p} (\Gamma(a_i + \omega))}{\prod_{j=1}^{p} (\Gamma(a_i) \prod_{i=2}^{p} (\Gamma(b_j + \omega))} \times \sigma S_{\omega, \rho} \]

D. \[\frac{d}{dz} \left[-\sigma S_{\omega, \rho} \right] = -\sigma \frac{\prod_{j=1}^{p} (\Gamma(b_j) \prod_{i=2}^{p} (\Gamma(a_i + \omega))}{\prod_{j=1}^{p} (\Gamma(a_i) \prod_{i=2}^{p} (\Gamma(b_j + \omega))} \times \sigma S_{\omega, \rho} \]

III. ASSOCIATED FAMILIES OF INCOMPLETE S-FUNCTIONS

Definition 2: A generalized incomplete gamma function corresponding to the S-function investigated here is defined by

\[S_{\omega, \rho} \left[\frac{a, a_2, \ldots, a_p; b_1, \ldots, b_q; \lambda, \nu, p}{(z, x)} \right] = \left(\frac{2p}{\pi} \right)^{1/2} \int t^{\lambda-1} K_{\nu}(pt) \times z^\nu \left(1 - \frac{z}{t^\rho} \right) dt \]

where, \(z, \omega, \rho > 0, \text{Re}(\rho) > 0 \),

\(\text{Re}(\lambda + \nu | \omega + \frac{a_0}{\omega}) > 0 \),

and

\(\text{Re}(\lambda + \nu | \omega + \frac{b_0}{\omega}) > 0; \omega \neq 0, c \neq 0, -1, -2, \ldots \)

\(z \geq 0 \). When \(p = 2 \) and \(q = 1 \), the (15) reduces to one involving Dotsenko function defined by (5): as

\[\left[\frac{a_0, c, \lambda, \nu, p}{(z, x)} \right] = \left(\frac{2p}{\pi} \right)^{1/2} \int t^{\lambda-1} K_{\nu}(pt) \times z^\nu \left(1 - \frac{z}{t^\rho} \right) dt \]

Furthermore, a complement of the incomplete S-function is defined analogously by

\[S_{\omega, \rho} \left[\frac{a, a_2, \ldots, a_p; b_1, \ldots, b_q; \lambda, \nu, p}{(z, x)} \right] = \left(\frac{2p}{\pi} \right)^{1/2} \int t^{\lambda-1} K_{\nu}(pt) \times z^\nu \left(1 - \frac{z}{t^\rho} \right) dt \]

where, \(z, \omega, \rho > 0, \text{Re}(\rho) > 0 \),

\(\text{Re}(\lambda + \nu | \omega + \frac{b_0}{\omega}) > 0 \),

\(\text{Re}(\lambda + \nu | \omega + \frac{a_0}{\omega}) > 0; \omega \neq 0, c \neq 0, -1, -2, \ldots \)

\(z \geq 0 \).

Furthermore, a complement of the incomplete S-function is defined analogously by

\[S_{\omega, \rho} \left[\frac{a, a_2, \ldots, a_p; b_1, \ldots, b_q; \lambda, \nu, p}{(z, x)} \right] = \left(\frac{2p}{\pi} \right)^{1/2} \int t^{\lambda-1} K_{\nu}(pt) \times z^\nu \left(1 - \frac{z}{t^\rho} \right) dt \]

where, \(z, \omega, \rho > 0, \text{Re}(\rho) > 0 \),

\(\text{Re}(\lambda + \nu | \omega + \frac{a_0}{\omega}) > 0 \),

\(\text{Re}(\lambda + \nu | \omega + \frac{b_0}{\omega}) > 0; \omega \neq 0, c \neq 0, -1, -2, \ldots \)

\(z \geq 0 \).
where \(z, \omega, \rho > 0, \Re(a) > 0, \Re(b) > 0, \Re(p) > 0 \), \(\Re(\lambda) > 1, c \neq 0, -1, -2, \ldots, x > 0 \), and \(z \geq 0 \)

Then clearly, from (7), (15), and (17) we find that

\[
S_{\omega, \rho}^{a, b; c, d; e, f, g}(z, x) = \sum_{n=0}^{\infty} \frac{(a)_n}{(c)_n} \frac{(b)_n}{(d)_n} \frac{(c)_n}{(e)_n} \frac{(d)_n}{(f)_n} \frac{(e)_n}{(g)_n} \frac{(x)_n}{(z)_n} \frac{\Gamma(\lambda + n)}{\Gamma(\lambda)} \left(\frac{z}{x} \right)^n
\]

Remark 1: If in (16), we set \(p = \rho = 1 \), \(\nu = 1/2 \), replace \(z \) by \(z/\alpha \), replace \(\lambda \) by \(b + 1/2 \), and take the limit as \(\alpha \) tends to infinity, we obtain the following incomplete functions introduced by [27]

\[
\lim_{\alpha \to \infty} \frac{C_{\omega, \rho}^{a, b; c, d; e, f, g}(z, x)}{\alpha} = \frac{\Gamma(\lambda + 1/2)}{\Gamma(\lambda)} \left(\frac{z}{x} \right)^{1/2}
\]

and

\[
\lim_{\alpha \to \infty} \frac{D_{\omega, \rho}^{a, b; c, d; e, f, g}(z, x)}{\alpha} = \frac{\Gamma(\lambda + 1/2)}{\Gamma(\lambda)} \left(\frac{z}{x} \right)^{1/2}
\]

where \(C_{\omega, \rho}^{a, b; c, d; e, f, g}(z, x) \) and \(D_{\omega, \rho}^{a, b; c, d; e, f, g}(z, x) \) are the incomplete functions discussed by [3] and \(\omega \gamma z \) and \(\omega \Gamma_z \) are the incomplete functions studied by [27].

As \(z \to 0 \) in (19), and (20), we arrive at the following interesting results:

\[
C_{0}^{a, b; c, d; e, f, g}(0, x) = \int_{0}^{\infty} t^{1/2 - 1} \exp(-t) dt = \gamma(\lambda, x)
\]

and

\[
D_{0}^{a, b; c, d; e, f, g}(0, x) = \int_{0}^{\infty} t^{1/2 - 1} \exp(-t) dt = \Gamma(\lambda, x)
\]

where \(\gamma(\lambda, x) \) and \(\Gamma(\lambda, x) \) denote the well-known incomplete gamma function and its complement respectively.

It is interesting to note that the incomplete functions considered by [4], [5] follow as special cases of (19) and (20) by giving suitable values to the parameters.

Derivatives of the Incomplete S-Functions:

We have

\[
\frac{d}{dx} \left[S_{\omega, \rho}^{a, b; c, d; e, f, g}(x) \right] = \alpha \sigma^{-1} \int_{0}^{\infty} \frac{a, \alpha_2, \ldots, a_p; b_1, \ldots, b_q; \lambda, \nu, p(z, x)}{\omega, \rho}
\]

where

\[
\frac{a, \alpha_2, \ldots, a_p; b_1, \ldots, b_q; \lambda, \nu, p(z, x)}{\omega, \rho}
\]

and

\[
\frac{a, \alpha_2, \ldots, a_p; b_1, \ldots, b_q; \lambda, \nu, p(z, x)}{\omega, \rho}
\]

are defined in (18).

Next, we have

\[
\frac{d}{dx} \left[\frac{a, \alpha_2, \ldots, a_p; b_1, \ldots, b_q; \lambda, \nu, p(z, x)}{\omega, \rho} \right] = \alpha \sigma^{-1} \int_{0}^{\infty} \frac{a, \alpha_2, \ldots, a_p; b_1, \ldots, b_q; \lambda, \nu, p(z, x)}{\omega, \rho}
\]

\[
\frac{a, \alpha_2, \ldots, a_p; b_1, \ldots, b_q; \lambda, \nu, p(z, x)}{\omega, \rho}
\]

where the incomplete function \(C_{0}^{a}(\cdot) \) is defined in (16).

Finally, we set \(p = q = 1 \), (21) gives

\[
\frac{d}{dx} \left[\frac{a, \alpha_2, \ldots, a_p; b_1, \ldots, b_q; \lambda, \nu, p(z, x)}{\omega, \rho} \right] = \alpha \sigma^{-1} \int_{0}^{\infty} \frac{a, \alpha_2, \ldots, a_p; b_1, \ldots, b_q; \lambda, \nu, p(z, x)}{\omega, \rho}
\]

which for \(p = 2 \) and \(q = 1 \) yields

\[
\frac{d}{dx} \left[\frac{a, \alpha_2, \ldots, a_p; b_1, \ldots, b_q; \lambda, \nu, p(z, x)}{\omega, \rho} \right] = \alpha \sigma^{-1} \int_{0}^{\infty} \frac{a, \alpha_2, \ldots, a_p; b_1, \ldots, b_q; \lambda, \nu, p(z, x)}{\omega, \rho}
\]

where the incomplete function \(D_{0}^{a}(\cdot) \) is defined in (18).

Consider

\[
\frac{d}{dt} \left[t^{n-1} K_{\nu}(pt) \right] R_{q}(a, a_1, \ldots, a_p; b_1, \ldots, b_q; \omega, z / t^p) = (n-1) t^{n-2} K_{\nu}(pt)
\]

\[
\times \int_{0}^{1} R_{q}(a, a_1, \ldots, a_p; b_1, \ldots, b_q; \omega, z / t^p)
\]

\[
+ p \left[\frac{\lambda}{t} K_{\nu}(pt) - K_{\nu-1}(pt) \right]^{t-1} \times
\]

\[
\int_{0}^{1} R_{q}(a, a_1, \ldots, a_p; b_1, \ldots, b_q; \omega, z / t^p) +
\]
\[q \prod_{j=1}^{p} \Gamma(b_j) \prod_{i=2}^{p} \Gamma(\alpha_i + \omega) / \prod_{j=1}^{q} \Gamma(b_j + \omega) \times \]
\[\prod_{i=2}^{p} \Gamma(a_i + \omega) / \prod_{j=1}^{q} \Gamma(b_j + \omega) \times \]
\[\times p R_q (a_1, a_2, \ldots, a_p; b_1, \ldots, b_q; \omega/\omega) \]
and integrating from \(x \) to \(\infty \) and making certain adjustments, it yields
\[a_1 \prod_{i=2}^{p} \Gamma(b_i) / \prod_{j=1}^{q} \Gamma(b_j + \omega) \times \]
\[\prod_{i=2}^{p} \Gamma(a_i + \omega) / \prod_{j=1}^{q} \Gamma(b_j + \omega) \times \]
\[S_x^{\infty} \left[a, a_2, \ldots, a_p; \omega, \omega_h, \omega_b, \omega_q; \omega, \omega, \omega, \omega \right] - \]
\[\lambda (1 - \lambda \omega) S_x^{\infty} \left[a, a_2, \ldots, a_p; \omega, \omega_h, \omega_b, \omega_q; \omega, \omega, \omega, \omega \right] + \]
\[\left(\frac{2p}{\pi} \right)^{1/2} t^{-1} K_v (\lambda (pt)) \times \]
\[p R_q (a_1, a_2, \ldots, a_p; b_1, \ldots, b_q; \omega, \omega, \omega, \omega - z / t^{\rho}) = 0 \]

IV. A CLASS OF PROBABILITY DENSITY FUNCTIONS

In this section, we will discuss a generalized inverse Gaussian distribution and employ for \(\Lambda \) the function
\[\Lambda = \mu \left(\frac{2p}{\pi} \right)^{1/2} \left[S_x^{\infty} \left[a, a_2, \ldots, a_p; \omega, \omega_h, \omega_b, \omega_q; \omega, \omega, \omega, \omega \right] \right]^{-1} \]
where \(p \) and \(z \) denote the scalar parameters, whereas \(\lambda, \rho \) represent the shape parameters.

Definition 3: A unified form of the inverse Gaussian distribution is defined by
\[f(x) = \left\{ \begin{array}{ll}
\Lambda x^{\lambda - 1} K_v (\lambda (pt)) \times \\
p R_q (a_1, a_2, \ldots, a_p; b_1, \ldots, b_q; \omega, \omega, \omega, \omega - z / t^{\rho}) , & \text{for } x > 0 \\
0 , & \text{elsewhere}
\end{array} \right. \] (22)

where
\[\lambda \pm \mu \nu + \frac{\rho a}{\omega} > 0, \lambda \pm \mu \nu + \frac{\rho b}{\omega} > 0 (i = 2, \ldots, p) ; \]
\[\mu, \omega, p, \rho > 0, z > 0, b_j \neq 0, -1, -2, \ldots (j = 1, \ldots, q) \]
The parameters and variable appearing in (22) are so restricted that \(f(x) \) remains positive for \(x > 0 \).
It readily follows that
\[\int_{-\infty}^{\infty} f(x) dx = 1. \]
Further from the definition (22), we infer that
\[f(0) = 0 \quad \text{and} \quad \lim_{x \to \infty} f(x) = 0. \]

Differentiation of the expression (22) gives
\[f'(x) = \frac{\lambda - 1}{x} - \frac{p \mu \nu^{1-1} K_v (\mu (x^{1-1}))}{K_v (\mu (x^{1-1}))} + \]
\[\frac{a \nu K_v (\mu (x^{1-1}))}{K_v (\mu (x^{1-1}))} \int_{0}^{x} f(x) dx + \]
\[\int_{0}^{x} \left(\frac{2p}{\pi} \right)^{1/2} t^{-1} K_v (\lambda (pt)) \times \]
\[p R_q (a_1, a_2, \ldots, a_p; b_1, \ldots, b_q; \omega, \omega, \omega, \omega - z / t^{\rho}) \]

Special cases of the generalized inverse Gaussian distribution: For \(p = 2 \) and \(q = 1 \), the probability density model (22) reduces to one studied by [25]
\[f(x) = \left\{ \begin{array}{ll}
\Lambda_1 x^{\lambda - 1} K_v (\mu (x^{1-1})) \times \\
2 \int_{0}^{x} f(x) dx , & \text{for } x > 0 \\
0 , & \text{elsewhere}
\end{array} \right. \] (23)
where
\[\lambda \pm \mu \nu + \frac{\rho a}{\omega} > 0, \lambda \pm \mu \nu + \frac{\rho b}{\omega} > 0 ; \mu, \omega, p, \rho > 0, z > 0. \]
\[c \neq 0, -1, -2, \ldots \quad \text{and} \]
\[\Lambda_1 = \mu \left(\frac{2p}{\pi} \right)^{1/2} \left[S_x^{\infty} \left[a, a_2, \ldots, a_p; \omega, \omega_h, \omega_b, \omega_q; \omega, \omega, \omega, \omega \right] \right]^{-1} \]
If \(\nu = 1 \), the density defined by (23) reduces to the Gaussian density function associated with Dotserko function (5) in the interesting form
\[f(x) = \Lambda_2 x^{\lambda - 1} \exp(-px^{1-1}) \int_{0}^{x} f(x) dx , \text{for } x > 0 \\
0 , \text{elsewhere} \]
\[\Lambda_2 = \mu \left[S_x^{\infty} \left[a, a_2, \ldots, a_p; \omega, \omega_h, \omega_b, \omega_q; \omega, \omega, \omega, \omega \right] \right]^{-1} \]
Replacing \(z \) by \(z/\lambda \) in the above expression and taking the limit as \(a \to \infty \), we arrive at the density function recently studied by [3],
\[f(x) = \Lambda_3 x^{\lambda - 1} \exp(-px^{1-1}) \int_{0}^{x} f(x) dx , \text{for } x > 0 \\
0 , \text{elsewhere} \]
\[\Lambda_3 = \mu \left[S_x^{\infty} \left[a, a_2, \ldots, a_p; \omega, \omega_h, \omega_b, \omega_q; \omega, \omega, \omega, \omega \right] \right]^{-1} \]
where
\[z \geq 0 , \rho > 0 , \mu > 0 ; z, \omega, \rho > 0 ; \text{Re}(\lambda) > 0, c \neq 0, -1, -2, \ldots \] and
If we take $\rho = \mu$ in (24) it reduces to the inverse Gaussian density discussed by [2] in the form

$$f(x) = \Lambda_4 x^{-\lambda+1} \exp(-px^2) R_1(b; c; \omega x - z / x, \lambda)$$

where $z > 0$, $\lambda > 0$, $c = 0, \omega, \mu > 0$.

We note that the notation given on the right of the above equation is due to [2].

For $c = b = \omega = \rho = 1$ in (25), we obtain

$$f(x) = \Lambda_4 x^{-\lambda+1} \exp(-(x - z)^2 / 2\rho^2)$$

where $Z_\rho(x)$ is the Krätzel function defined by (1).

For $\mu = \rho = 1$, $p = 2$, $q = 1$, (22) becomes

$$f(x) = \Lambda_4 x^{-\lambda+1} \exp(-x^2 / 2\rho^2)$$

where $\Lambda_4 = \left(\frac{2p}{\pi} \right)^{1/2} \left[\frac{\rho}{S_{a,b,c,\lambda,\nu,p}}(z) \right]^{-1}$

If we further take $\nu = 1/2$ and replace z by z/α and take the limit as $\alpha \to \infty$, then (26) gives the following density function

$$f(x) = \Lambda_6 x^{-\lambda+1} \exp(-px^2) R_1(b; c; \omega x - z / x)$$

where $\Lambda_6 = \left[S_{a,b,c,\lambda+1/2,\nu,p}(z) \right]^{-1}$ which for $b = c$, $\omega = 1$ yields

$$f(x) = \frac{x^{-\lambda+1} \exp(-px^2 - z^2 / 4\rho^2)}{2\rho^2} K_\lambda(2\sqrt{pz})$$

where $K_\lambda(z)$ is the modified Bessel function of the third kind or Macdonald function. The density represented by (28) is the inverse Gaussian density studied by [11].

V. A SET OF STATISTICAL FUNCTIONS

For the statistical density defined by (22), the following statistical functions are derived.

The k^{th}-moment:

The k^{th} moment is given by

$$\mu_k = \int_{-\infty}^{\infty} x^k f(x) dx$$

Theorem 2: For the density function $f(x)$ defined by (22), the k^{th} moment is given by

$$\mu_k = \frac{\int_{-\infty}^{\infty} x^k f(x) dx}{\int_{-\infty}^{\infty} f(x) dx}$$

which for $p = 2$ and $q = 1$ reduces to the following result given by [24]

$$\mu_k = \frac{\int_{-\infty}^{\infty} x^k f(x) dx}{\int_{-\infty}^{\infty} f(x) dx}$$

On taking $p = 2$, $q = 1$ and $\nu = 1/2$ in (29), replacing z by z/α and taking the limit as a tends to infinity, we obtain the following result obtained by [3] as:

$$\mu_k = \frac{\int_{-\infty}^{\infty} x^k f(x) dx}{\int_{-\infty}^{\infty} f(x) dx}$$
The existence of the expected value \(E(X) \) for a positive real random variable \(X \) with density \(f(x) \), where \(S(*) \) is the cumulative density function (c.d.f) namely

\[
S(x) = \int_0^x f(t) \, dt
\]

This function \(S(*) \) is the survivor function of \(X \) and \(S(*) \) is defined as \(S(*)=1-F(x) >0 \) for \(x>0 \) and \(F(x) \) being the cumulative density function (c.d.f) namely

\[
F(x) = \int_0^x f(u) \, du
\]

This function \(S(*) \) has its origin in reliability theory.

Theorem 3: For the density function defined by (22), we have:

\[
S(x) = \int_0^x f(t) \, dt,
\]

\[
F(x) = \int_0^x f(t) \, dt
\]

Theorem -2 easily follows from the definition (29) on using the special cases of the S-function discussed in the preceding section of the paper.

Expected Value: Let \(\Psi(x) \) be a function of a continuous real random variable \(x \) with density \(f(x) \), then the expected value of \(\Psi(x) \) is defined as \([21] \)

\[
E(\Psi) = \int \Psi(x) f(x) \, dx
\]

The hazard rate function (failure rate) is defined as \([22] \)

\[
h(t) = \frac{f(t)}{S(t)}
\]

where \(S(*) \) is the survivor function of \(x \)

\[
S(*) = 1 - F(x) > 0 \text{ for } x > 0
\]

and \(F(x) \) being the cumulative density function (c.d.f) namely

\[
F(x) = \int_0^x f(u) \, du
\]

This function \(S(*) \) has its origin in reliability theory.

The Mean Residue Life Function: The mean residue life function is defined as

\[
K(x) = \frac{1}{S(*)} \int_{0}^{x} (t - x) f(t) \, dt.
\]

Separating the variables, we obtain

\[
\int_{0}^{\infty} f(t) \, dt = \int_{0}^{\infty} t^{k} K_v(p t^\mu) \, dt
\]

and

\[
\int_{0}^{\infty} f(t) \, dt = \int_{0}^{\infty} t^{k} K_v(p t^\mu) \, dt
\]

where the incomplete S-functions \(S_0(N) \) and \(S_{\infty} \) are defined in (15) and (17) respectively.

Proof: The Theorem -3 follows from the following equations:

\[
\left(\frac{2p}{\pi} \right)^{1/2} \mu \int t^{k-1} K_v(p t^\mu) \, dt
\]

and

\[
\int_{0}^{\infty} f(t) \, dt = \int_{0}^{\infty} t^{k} K_v(p t^\mu) \, dt
\]
As \(\frac{x}{S^{\alpha}(x)} \int f(t) \, dt = x \) so that from (30) and (31), we have

\[
K(x) = \frac{\Gamma(a_1, a_2, \ldots, a_p, b_1, b_2, \ldots, b_q; z)}{\Gamma(a_1 + b_1 + \cdots + b_q; z)} - x
\]

The Moment Generating Function:
The moment generating function of a continuous and random variable, denoted by \(M_X(t) \), is defined by

\[
E(e^{tx}) = M_X(t) = \int_{0}^{\infty} e^{tx} f(x) \, dx
\]

with certain restrictions on the parameters in the density function \(f(x) \). It can be easily seen that for the density defined by (27), namely

\[
f(x) = A_0 x^{\lambda-1} \exp(-px) \cdot \frac{1}{\Gamma(b_1, c; \alpha_2 - z/x)}
\]

the moment generating function can be derived in a simplified form

\[
E(e^{tx}) = \frac{\Gamma(b_1, c; \alpha_2 - z/x)}{\Gamma(b_1 + \alpha_2 - z/x)}
\]

as given in the paper by [2].

VI. CONCLUSION

For various suitable choices of the parameters involved in our results in the preceding sections, we can easily deduce several special cases which were considered in some of the earlier works cited in the abstract. The details involved in these specializations are being left as an exercise for the interested reader.

In conclusion, it is expected that the research workers in the fields of applied statistics, generalized special functions and reliability theory may find this work useful in their applications.

REFERENCES

R. K. Saxena was born in Jaipur, Rajasthan India on 11 November 1936. He received his M.Sc. and Ph.D. degrees in Mathematics from the University of Rajasthan, Jaipur, India in 1956 and 1962 respectively. The topic of his Ph.D. thesis is ‘A Study in Integral Transform’. He received D.Sc. degree from the University of Jodhpur in 1972, on the topic ‘Application of operator theory & Transform techniques to some special functions’. He is Professor (Emeritus) of the Jai Narain Vyas University, Jodhpur. He became Fellow of the National Academy of Sciences of India in 1973. His major field of study is Pure Mathematics.

He has authored two research monographs (i) Generalized hypergeometric functions with applications in Statistics and physical sciences, Springer-Verlag, Heidelberg, Germany, 1973

He is the author of over 300 research articles covering various areas of special functions, integral transforms, integral equations, fractional calculus, statistical distributions, astrophysics, and fractional differential equations. Professor Saxena was awarded the Fellowship of National Research Council of Canada for one year during 1965-1966. He was awarded Dr. (Mrs.) Ratna Kumari Gold Medal by Vigyan Parishad, Allahabad, U. P. India in August 1975. He was Emeritus Fellow of the University Grants Commission of India from 1999 to 2001. He was National Lecturer of the University Grants Commission of India for one year during 1985-1986 session.

Ravi Saxena is a Civil Engineer from J. N. V. University, Jodhpur, India where he has been Senior Assistant Professor of Fluid Mechanics since 1992. He received his B.E. (Civil), M.E. (Water Resources and Irrigation Engineering) and Ph.D. in 1986, 1998 and 2004 from J. N. V. University, Jodhpur, India. He also served in Irrigation department for 6 years and played a role in the construction of Gravity Dam as well as in Canal construction. He joined the J. N. V. University, Jodhpur in 1992. He has been awarded Ph.D. degree on the research topic Experimental Studies of Disturbed Turbulent Boundary Layer in 2004 from J. N. V. University, Jodhpur. He is also Principal Investigator of Major Research Project on Disturbed Turbulent Boundary Layer Flow past surface mounted projects awarded by University Grants Commission, New Delhi, India. He is also Life member Institution of Engineers (I), Indian Water Resources Society, Indian Association of Hydrology, Indian Water Works Association, Indian Society of Hydraulics, Indian Society of Technical Education, Indian Road Congress. He has been associated with Designing of Canal Head works/Gates, Designing of Syphons, Aqueducts, Cross drainage works of Jodhpur Lift canal. Designing and Planning of Barracks, Bunkers. Designing of Railway bridges. Retrofitting of over head water tanks.