A new preconditioned AOR method for Z-matrices

Guangbin Wang†, Ning Zhang, and Fuping Tan

Abstract—In this paper, we present a preconditioned AOR-type iterative method for solving the linear systems $Ax = b$, where A is a Z-matrix. And give some comparison theorems to show that the rate of convergence of the preconditioned AOR-type iterative method is faster than the rate of convergence of the AOR-type iterative method.

Keywords—Z-matrix, AOR-type iterative method, precondition, comparison.

I. INTRODUCTION

For solving linear system

$$Ax = b,$$

(1)

where A is an $n \times n$ square matrix, and x and b are n-dimensional vectors, the basic iterative method is

$$Mx^{k+1} = Nx^k + b, k = 0, 1, \ldots ,$$

(2)

where $A = M - N$ and M is nonsingular. Thus (2) can be written as

$$x^{k+1} = Tx^k + c, k = 0, 1, \ldots ,$$

where $T = M^{-1}N$, $c = M^{-1}b$.

Assuming A has unit diagonal entries and let $A = I - L - U$ where I is the identity matrix, $-L$ and $-U$ are strictly lower and strictly upper triangular parts of A, respectively. Then, (I) the iteration matrix of the classical Gauss-Seidel-type method is given by

$$T = (I - L)^{-1}U$$

(3)

(II) the iteration matrix of the classical SOR-type method is given by

$$L_r = (I - rL)^{-1}[(1 - r)I + rU]$$

(4)

where $r \neq 0$ is a parameter called the relaxation parameter.

(III) the iteration matrix of the classical AOR-type method is given by

$$L_{r,w} = (I - L)^{-1}[(1 - w)L + (w - r)U]$$

(5)

where w and r are real parameters and $w \neq 0$.

Transform the original system (1) into the preconditioned form

$$PAx = Pb.$$

Then, we can define the basic iterative scheme:

$$M_p x^{k+1} = N_p x^k + Pb, k = 0, 1, \ldots ,$$

where $PA = M_p - N_p$ and M_p is nonsingular. Thus the equation above can also be written as

$$x^{k+1} = T x^k + c, k = 0, 1, \ldots ,$$

where $T = M_p^{-1}N_p$, $c = M_p^{-1}Pb$.

In paper [1], Meijun Wu et al. presented the preconditioned AOR-type iterative method with

$$P_a = I + S_a$$

(6)

$$\begin{pmatrix}
1 & -\alpha_1 a_{12} & -\alpha_2 a_{23} & \cdots & -\alpha_{n-1} a_{n-1,n} \\
1 & 1 & -\alpha_2 a_{23} & \cdots & -\alpha_{n-1} a_{n-1,n} \\
1 & 1 & 1 & \cdots & 1 \\
1 & 1 & 1 & \cdots & 1 \\
1 & 1 & 1 & \cdots & 1 \\
\end{pmatrix}$$

and $\alpha_i (i = 1, 2, \ldots , n - 1)$ are nonnegative real numbers, and obtained some comparison results.

In this paper, we will present the preconditioned AOR-type iterative method with

$$P_a = I + K_a$$

(7)

$$\begin{pmatrix}
1 & -\beta_1 a_{12} & -\beta_2 a_{23} & \cdots & -\beta_{n-1} a_{n-1,n} \\
1 & 1 & -\beta_2 a_{23} & \cdots & -\beta_{n-1} a_{n-1,n} \\
1 & 1 & 1 & \cdots & 1 \\
1 & 1 & 1 & \cdots & 1 \\
1 & 1 & 1 & \cdots & 1 \\
\end{pmatrix}$$

and $\beta_i (i = 1, 2, \ldots , n - 1)$ are nonnegative real numbers.

In the following, we consider three splittings for A:

$$A = \begin{pmatrix}
(\tilde{D} - \tilde{L})^{-1}U & \tilde{D} - \tilde{L} - U \\
\tilde{D} - \tilde{L} - U & \tilde{D} - \tilde{L} - U \\
\tilde{D} - \tilde{L} - U & \tilde{D} - \tilde{L} - U \\
\tilde{D} - \tilde{L} - U & \tilde{D} - \tilde{L} - U \\
\tilde{D} - \tilde{L} - U & \tilde{D} - \tilde{L} - U \\
\end{pmatrix}$$

(8)

where \tilde{D}, \tilde{L} and \tilde{U} are diagonal, strictly lower and strictly upper triangular parts of A, respectively.

In view of (8), the iteration matrices associated with \tilde{A} are:

$$\tilde{T} = (\tilde{D} - \tilde{L})^{-1}\tilde{U}$$

(9)

$$\tilde{L}_r = (\tilde{D} - \tilde{L})^{-1}[(1 - r)\tilde{D} + r\tilde{U}]$$

(10)

$$\tilde{L}_{r,w} = (\tilde{D} - \tilde{L})^{-1}[(1 - w)\tilde{D} + (w - r)\tilde{L} + w\tilde{U}]$$

(11)

In this paper, we will discuss the preconditioned iterative methods with the preconditioner P_a for solving Z-matrices linear systems and present comparison theorems of these methods.

Guangbin Wang and Ning Zhang are with the Department of Mathematics, Qingdao University of Science and Technology, Qingdao, 266061, China.

Fuping Tan is with the Department of Mathematics, Shanghai University, Shanghai, 200444, China.

† Corresponding author. E-mail: wguangbin750828@sina.com. This work was supported by Natural Science Fund of Shandong Province of China (Y2008A13).
II. COMPARISON RESULTS OF PRECONDITIONED AOR-TYPE METHODS WITH PRECONDITIONER P_β

We need the following definitions and results.

Definition 2.1 (Young [3]). A is a Z-matrix if $a_{ij} \leq 0$, for all $i, j = 1, 2, \ldots, n$, $i \neq j$.

Lemma 2.2 (Young [3]). Let $A \geq 0$ be an irreducible matrix. Then

1. A has a positive real eigenvalue equals to its spectral radius;
2. To $\rho(A)$ there corresponds an eigenvector $x > 0$;
3. $\rho(A)$ is a simple eigenvalue of A.

Lemma 2.3 (Varga [4]). Let A be a nonnegative matrix. Then

1. If $\alpha x \leq Ax$ for some nonnegative vector x, $x \neq 0$, then $\alpha \leq \rho(A)$;
2. If $\alpha x \leq \beta x$ for some positive vector x, then $\alpha \leq \beta$. Moreover, if A is irreducible and if $0 \neq \alpha x \leq Ax$ for some nonnegative vector x, then $\alpha \leq \rho(A) \leq \beta$ and x is a positive vector.

Lemma 2.4 ([5]). Let $A = M - N$ be an M-splitting of A. Then $\rho(M^{-1}N) < 1$ if and only if A is a nonsingular M-matrix.

Lemma 2.5 ([6]). Let A be a Z-matrix. Then A is a nonsingular M-matrix if and only if there is a positive vector x such that $Ax \geq 0$.

For the linear system (1), we consider its preconditioned form

$$P_\beta Ax = P_\beta b$$

with the preconditioner $P_\beta = I + K_\beta$ in this section.

We apply the AOR method to it and have the corresponding preconditioned AOR iteration matrix

$$\hat{L}_{r,w} = (D_\beta - rL_\beta)^{-1}[(1-w)D_\beta + (w-r)L_\beta + wU_\beta],$$

where D_β, $-L_\beta$ and $-U_\beta$ are diagonal, strictly lower and strictly upper triangular parts of $A_\beta = P_\beta A$, respectively.

Now we give the main results as follows.

Theorem 2.1 Let $A = I - L - U \in R^{n \times n}$ be a nonsingular Z-matrix, $L_{r,w}$ and $U_{r,w}$ be the iteration matrices given by (5) and (12). Assume that $0 < r < w < 1$, and $0 < \beta < 1$, $i = 1, 2, \ldots, n$.

(i) If $\rho(L_{r,w}) < 1$, then

$$\rho(\hat{L}_{r,w}) \leq \rho(L_{r,w}) < 1$$

(ii) Let A be irreducible. Assume that $a_{i,i-1}a_{i-1,i} < 1, i = 2, \ldots, n$, then

(i) $\rho(\hat{L}_{r,w}) > \rho(L_{r,w})$ if $\rho(L_{r,w}) > 1$;
(ii) $\rho(\hat{L}_{r,w}) = \rho(L_{r,w})$ if $\rho(L_{r,w}) = 1$;
(iii) $\rho(\hat{L}_{r,w}) < \rho(L_{r,w})$ if $\rho(L_{r,w}) < 1$.

Proof. Let

$$M = \frac{1}{w}(I - rL),$$

$$N = \frac{1}{w}[(1-w)I + (w-r)L + wU],$$

$$E_\beta = \frac{1}{w}(D_\beta - rL_\beta),$$

$$F_\beta = \frac{1}{w}[(1-w)D_\beta + (w-r)\beta L + wU_\beta],$$

$$M_\beta = \frac{1}{w}(I + K_\beta)(I - rL),$$

$$N_\beta = \frac{1}{w}(I + K_\beta)[(1-w)I + (w-r)L + wU].$$

Then, we have

$$A = M - N, \quad A_\beta = E_\beta - F_\beta = M_\beta - N_\beta$$

(i) Since A is a nonsingular Z-matrix and $0 < r < w < 1$, $w \neq 0$, it is clear that $M = \frac{1}{w}(I - rL)$ is a nonsingular M-matrix and the splitting

$$A = M - N = \frac{1}{w}(I - rL) - \frac{1}{w}[(1-w)I + (w-r)L + wU]$$

is an M-splitting. Since $\rho(L_{r,w}) < 1$, it follows from Lemma 2.4 that A is a nonsingular M-matrix. Then by Lemma 2.5, there is a positive vector x such that $Ax \geq 0$, so $A_\beta x = (I + K_\beta)Ax \geq 0$.

By Lemma 2.5, A_β is also a nonsingular M-matrix. Obviously, we can get D_β is an positive diagonal matrix, and L_β is nonnegative. From $r > 0$ we know that E_β is a Z-matrix. Since $rD_\beta^{-1}L_\beta \geq 0$ is a strictly lower triangular matrix so that $\rho(rD_\beta^{-1}L_\beta) = 0 < 1$, we have $(I - rD_\beta^{-1}L_\beta)^{-1} \geq 0$. Then

$$E_\beta = (I - rD_\beta^{-1}L_\beta)^{-1}D_\beta^{-1} \geq 0$$

Hence E_β is an nonsingular M-matrix. By $F_\beta \geq 0$ we can prove that $A_\beta = E_\beta - F_\beta$ is an M-splitting. It follows from Lemma 2.4 that

$$\rho(L_{r,w}) = \rho(E_\beta^{-1}F_\beta) < 1.$$
From the expression of \(L_{r,w} \), we obtain the following equality

\[
[(1 - w)I + (w - r)L + wU]x = \lambda(I - rL)x
\]

which is equivalent to

\[
[(1 - w - r)I + (w - r + \lambda r)L + wU]x = 0,
\]

or

\[
(\lambda - 1)(I - rL)xw(L + U - I) = 0
\]

(13)

Let \(K_2U = K_1 + K_2 \), where \(K_1 \) and \(K_2 \) are the diagonal and lower triangular parts of \(K_2U \), respectively. So

\[
A_{\beta} = D_{\beta} - L_{\beta} - U_{\beta}
= (I - K_1) - (L - K_1 + K_2L) - (U + K_2)
\]

where \(D_{\beta} = I - K_1, L_{\beta} = L - K_1 + K_2L, U_{\beta} = U + K_2 \)

By (13) and (14), we have

\[
\hat{L}_{r,w}x = xx
\]

\[
= (D_{\beta} - rL_{\beta})^{-1}[(1 - w)D_{\beta} + (w - r)L_{\beta} + wU_{\beta}
- \lambda(D_{\beta} - rL_{\beta})]x
\]

\[
= (D_{\beta} - rL_{\beta})^{-1}[(1 - w - r)D_{\beta}
+ (w - r + \lambda r)L_{\beta} + wU_{\beta}]x
\]

\[
= (D_{\beta} - rL_{\beta})^{-1}[(1 - w - \lambda)(I - K_1)
+ (w - r + \lambda r)(L - K_2 + K_2L) + w(U + K_2)]x
\]

\[
= (D_{\beta} - rL_{\beta})^{-1}[(1 - w - \lambda)(I - K_1)
+ (w - r + \lambda r)(K_3L) + wK_2]x
\]

\[
= (D_{\beta} - rL_{\beta})^{-1}[-(1 - w - \lambda)K_1
+ (w - r + \lambda r)(K_3L) + wK_2]x
\]

\[
= (D_{\beta} - rL_{\beta})^{-1}[(\lambda - 1)K_1 + r(\lambda - 1)(K_3L - K_2)
+ wK_2]x
\]

\[
= (D_{\beta} - rL_{\beta})^{-1}[(\lambda - 1)K_1 + r(\lambda - 1)(K_3L - K_2)
+ (\lambda - 1)K_3L]x
\]

\[
= (\lambda - 1)(D_{\beta} - rL_{\beta})^{-1}[K_1 + (1 - r)K_3L]x
\]

Here \((D_{\beta} - rL_{\beta})^{-1} \geq 0, \quad K_3 \geq 0, \quad (1 - r)K_3 \geq 0 \)

Thus, if \(\lambda > 1 \), then \(\hat{L}_{r,w} \geq 0 \) but not equal to 0. Therefore

\[
\hat{L}_{r,w} \geq \lambda x.
\]

By Lemma 2.3, we get \((L_{r,w})_{\beta} = \lambda = \rho(L_{r,w}) \).

(2) If \(\lambda = 1 \), then \(\hat{L}_{r,w} \) is not equal to 0. Therefore

\[
\hat{L}_{r,w} \geq \lambda x.
\]

By Lemma 2.3, we get \((L_{r,w})_{\beta} = \lambda = \rho(L_{r,w}) \).

(3) If \(\lambda < 1 \), then \(\hat{L}_{r,w} \leq 0 \) but not equal to 0. Therefore

\[
\hat{L}_{r,w} \leq \lambda x.
\]

By Lemma 2.3, we get \((L_{r,w})_{\beta} < \lambda = \rho(L_{r,w}) \).

Corollary 2.2 Let \(A = I - L - U \in R^{n \times n} \) be a nonsingular Z-matrix, \(L_r \) and \(L_r \) be the iteration matrices of classical SOR-type methods and preconditioned SOR-type methods with preconditioner \(P_{\beta} \), respectively. Assume that \(0 < r < 1 \), and \(0 < \beta \leq 1, i = 1, 2, \ldots, n - 1 \).

(1) If \(r(L_{r,w})_{\beta} < 1 \), then \((L_{r,w})_{\beta} \leq (L_{r,w})_{\beta} < 1 \).

(2) If \(r(L_{r,w})_{\beta} \leq r(L_{r,w})_{\beta} < 1 \).

(3) If \(r(L_{r,w})_{\beta} < r(L_{r,w})_{\beta} < 1 \).

Corollary 2.2 Let \(A = I - L - U \in R^{n \times n} \) be a nonsingular Z-matrix, \(L_r \) and \(L_r \) be the iteration matrices of classical SOR-type methods and preconditioned SOR-type methods with preconditioner \(P_{\beta} \), respectively. Assume that \(0 < r < 1, i = 1, 2, \ldots, n - 1 \).

(1) If \(r(L_{r,w})_{\beta} > 1 \), then \((L_{r,w})_{\beta} > (L_{r,w})_{\beta} > 1 \).

(2) If \(r(L_{r,w})_{\beta} = r(L_{r,w})_{\beta} = 1 \).

(3) If \(r(L_{r,w})_{\beta} < r(L_{r,w})_{\beta} < 1 \).

REFERENCES