Using Spectral Vectors and M-Tree for Graph Clustering and Searching in Graph Databases of Protein Structures

Do Phuc, and Nguyen Thi Kim Phung

Abstract—In this paper, we represent protein structure by using graph. A protein structure database will become a graph database. Each graph is represented by a spectral vector. We use Jacobi rotation algorithm to calculate the eigenvalues of the normalized Laplacian representation of adjacency matrix of graph. To measure the similarity between two graphs, we calculate the Euclidean distance between two graph spectral vectors. To cluster the graphs, we use M-tree with the Euclidean distance to cluster spectral vectors. Besides, M-tree can be used for graph searching in graph database. Our proposal method was tested with graph database of 100 graphs representing 100 protein structures downloaded from Protein Data Bank (PDB) and we compare the result with the SCOP hierarchical structure.

Keywords—Eigenvalues, m-tree, graph database, protein structure, spectra graph theory.

I. INTRODUCTION

In protein structure databases, it is common to have similarity query, such as asking for proteins in the database which have similar structure to a given protein structure. In this paper, we use graph to represent protein structure. The similarity query of protein structures will become the graph searching. The challenge of this problem is the problem of graph comparison. Subgraph isomorphism is known to be NP complete. As a result, the graph comparison is a NP hard problem. Several research approaches for this problem have been proposed recently. In [7], the authors proposed a method for graph indexing called Closure-tree. Closure-tree is a hierarchical index. The graphs (database objects) are in the leafs and graph closures are in the internal nodes of closure tree. Graph closures can be considered as a cluster representation that aggregates structural and annotation information of the underlined graphs. In [4], the authors proposed a method for graph indexing based on listing all of short paths. This approach provided the additionally frequency information and built up the distinct short paths as key-table and used it for filtering when a query is processed.

In [19],[20] the authors used frequent and discriminate graphs as features to index objects. In [15], the authors used frequent trees to index entities. The above methods require a candidate subgraph isomorphism in verification step and not all frequent features are good for indexing the graphs.

In this paper, instead of using the subgraph isomorphism for graph comparison, we approach to spectral graph theory by using spectral vector to represent graph. The normalized Laplacian representation of the adjacency matrix of graph is used to calculate the eigenvalues by using Jacobi rotation algorithm. From a set of eigenvalues, we create spectral vector for graph. The Euclidean distance between two spectral vectors is used to measure the similarity between two graphs. The similarity searching efficiency of M-tree in multimedia databases has been proven in [5],[13],[14]. We used M-tree for clustering and similarity search in graph databases. The M-tree is used to build a hierarchical cluster of graphs representing protein structures. The graph database of protein structures downloaded from PDB and SCOP are used for testing our proposed method. The rest of this papers is as follows 2) Using graph to represent the protein structure 3) Similarity between two graphs 4) Using M-tree for clustering and similarity search in graph database 5) Experiment and discussion 6) Conclusion.

II. USING GRAPH TO REPRESENT PROTEIN STRUCTURE

Protein is considered as polypeptide chains linked together. A polypeptide chain is a chain of amino acids (amino acid residues) linked together by peptide bonds. An amino acid consists of a central carbon atom (usually alpha Carbon C_α) and an amino group (NH2), a hydrogen atom (H), a Carboxy group (COOH) and a side chain (R) bound to the C_α. The backbone of the polypeptide is given by the repeated sequence of three atoms of each residue in the chain: the amide N, the alpha Carbon C_α and the Carbonyl C.

Fig. 1 is a schematic representation of spatial neighbors of a residue “i” in a polypeptide chain [17]. A distance cut off is taken and the residues which fall within the radius are the spatial neighbors of residue “i”. Residues A,B,C and D are spatial neighbors of “i”. The spatial neighbors are indicated using dotted lines shown in segment of the polypeptide chain. Based on the data of protein structure in PDB (Protein Data Bank), we have data of the protein structures. The following is
the information of protein named 1ARB (PROTEASE).

HEADER HYDROLASE (SERINE PROTEASE) 15-APR-93 1ARB

TITLE THE PRIMARY STRUCTURE AND STRUCTURAL CHARACTERISTICS OF 2 ACHROMOBACTER LYTIicus PROTEASE 1, A LYSINE-SPECIFIC SERINE PROTEASE

The information of a protein structure is as follows (The meaning of each columns is shown in Table I):

TABLE I

<table>
<thead>
<tr>
<th>Column</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATOM</td>
<td>Number of ATOM records</td>
</tr>
<tr>
<td>HETATM</td>
<td>Number of atomic coordinate records (ATOM + HETATM)</td>
</tr>
<tr>
<td>REMARK</td>
<td>Number of REMARK records</td>
</tr>
<tr>
<td>TER</td>
<td>Number of TER records</td>
</tr>
<tr>
<td>SEQRES</td>
<td>Number of SEQRES records</td>
</tr>
</tbody>
</table>

Fig. 1 Schematic representation of the spatial neighbors of amino acids in protein structure

The information of a protein structure is as follows (The meaning of each columns is shown in Table I):

Table 1

<table>
<thead>
<tr>
<th>Record</th>
<th>MASTER</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-6</td>
<td>Integer</td>
<td>numRemark</td>
</tr>
<tr>
<td>11-15</td>
<td>Integer</td>
<td>numHet</td>
</tr>
<tr>
<td>21-25</td>
<td>Integer</td>
<td>numHelix</td>
</tr>
<tr>
<td>26-30</td>
<td>Integer</td>
<td>numSheet</td>
</tr>
<tr>
<td>31-35</td>
<td>Integer</td>
<td>numTurn</td>
</tr>
<tr>
<td>36-40</td>
<td>Integer</td>
<td>numPlatform</td>
</tr>
<tr>
<td>41-45</td>
<td>Integer</td>
<td>numSite</td>
</tr>
<tr>
<td>46-50</td>
<td>Integer</td>
<td>numXform</td>
</tr>
<tr>
<td>51-55</td>
<td>Integer</td>
<td>NumCoord</td>
</tr>
<tr>
<td>56-60</td>
<td>Integer</td>
<td>numTer</td>
</tr>
<tr>
<td>61-65</td>
<td>Integer</td>
<td>numSeq</td>
</tr>
</tbody>
</table>

Two vertices called residues are connected by a bond edge when these residues are consecutive in the primary sequence. Starting from this simplified protein model, we compute proximity edges (spatial neighbors of residues). Two vertices will be connected by an edge if the distance between them does not exceed a threshold δ. Since we are interested in neighboring residues (spatial neighbors) within a physical interaction radius, we chose δ to vary over values ranging from 6.5–8.5Å [6],[8]. The graph created from the proximity of Ca atoms of protein is shown in Fig. 4 and a portion of graph database of protein structures is shown in Fig. 3.
III. SIMILARITY BETWEEN TWO GRAPHS

Spectral graph theory is the study of the eigenvalues of matrix representing graphs [2],[3],[16]. There are several matrix representations of graphs. The first representation is the adjacency matrix as follows:

\[
A_G(u, v) = \begin{cases}
1: & \text{if } u \text{ is adjacent to } v \\
0: & \text{otherwise}
\end{cases}
\]

Another representation of the normalized Laplacian as defined in Biggs [12] is as follows:

\[
L_G(u, v) = \begin{cases}
\text{degree}(v): & \text{if } u = v \\
-1: & \text{if } u \neq v \\
0: & \text{otherwise}
\end{cases}
\]

Given graph G1 and G2 (Fig. 5) as follows:

\[
\begin{array}{cccccc}
\text{a} & \text{b} & \text{c} & \text{d} & \text{e} & \text{f} \\
\text{a} & 0 & 1 & 0 & 0 & 0 & 1 \\
\text{b} & 1 & 0 & 1 & 1 & 0 & 0 \\
\text{c} & 0 & 1 & 0 & 0 & 1 & 1 \\
\text{d} & 0 & 1 & 1 & 0 & 0 & 0 \\
\text{e} & 1 & 0 & 0 & 1 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccc}
\text{G1} & \text{G2} \\
\text{a} & \text{b} & \text{c} & \text{d} & \text{e} & \text{f} \\
\text{a} & 0 & 1 & 0 & 0 & 0 & 1 \\
\text{b} & 1 & 0 & 1 & 1 & 0 & 0 \\
\text{c} & 0 & 1 & 0 & 0 & 1 & 1 \\
\text{d} & 0 & 1 & 1 & 0 & 0 & 0 \\
\text{e} & 1 & 0 & 0 & 1 & 0 & 0 \\
\end{array}
\]

The adjacency matrix of graph G1 is:

\[
\begin{array}{cccccc}
A & B & C & D & E \\
A & 0 & 1 & 0 & 0 & 1 \\
B & 1 & 0 & 1 & 1 & 0 \\
C & 0 & 1 & 0 & 1 & 0 \\
D & 0 & 1 & 1 & 0 & 1 \\
E & 1 & 0 & 0 & 1 & 0 \\
\end{array}
\]

The normalized Laplacian representation of graph G1:

\[
\begin{array}{cccccc}
A & B & C & D & E \\
A & 2 & -1 & 0 & 0 & -1 \\
B & -1 & 3 & -1 & -1 & 0 \\
C & 0 & -1 & 2 & -1 & 0 \\
D & 0 & -1 & 3 & -1 & 0 \\
E & -1 & 0 & 0 & -1 & 2 \\
\end{array}
\]

A. Eigenvalues

Consider a square matrix \(\hat{A} \) is called as an eigenvalue of \(A \) if there exists a non-zero vector \(x \) such that \(\hat{A}x = \lambda x \). In this case, \(x \) is called an eigenvector (corresponding to \(\lambda \)).

An example of eigenvalue and eigenvector are as follows. If

\[
x = \begin{bmatrix} 1 \\ -2 \end{bmatrix}
\]

is an eigenvector corresponding to eigenvalue \(\hat{A} = 0 \) for

\[
A = \begin{bmatrix} 6 & 3 \\ -2 & -1 \end{bmatrix}
\]

we could find out the equation \(Ax = \hat{A}x \):

\[
A = \begin{bmatrix} 6 & 3 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]

Therefore, \(\lambda \) and \(x \) are eigenvalues and eigenvectors, respectively, for \(A \).

We use Jacobi rotation algorithm to calculate eigenvalues of the normalized Laplacian matrix. The time complexity of Jacobi rotation algorithm is polynomial degree, then we sort eigenvalues in descendant order. The spectral vector of graph G1 is as follows:

\{4.62; 3.62; 2.38; 1.38; 0.00\}

B. Eigen Distances

The distance calculation itself is simply the Euclidean distance between two spectral vectors. To account for the different number of eigenvalues in different sized graphs, a
Pad \((v, x)\) function was defined which appended a number of \(x\) to the end of the shorter vector \(v\) until the appropriate length was reached for the longer vector [10]. In these above two graphs, the spectra vectors are as follows:

\[
\lambda_{G1} = \{4.62; 3.62; 2.38; 1.38; 0.00\} \\
\lambda_{G2} = \{5.25; 3.80; 3.55; 2.45; 2.20; 0.75; 0.00\}
\]

Since \(G1\) has fewer eigenvalues, the corresponding spectral vector will be padded with 0 until the length 7 of \(G2\):

\[
\lambda_{G1} = \{4.62; 3.62; 2.38; 1.38; 0.00; 0.00; 0.00\} \\
\lambda_{G2} = \{5.25; 3.80; 3.55; 2.45; 2.20; 0.75; 0.00\}
\]

The eigen distance is the Euclidean distance between \(\lambda_{G1}\) and \(\lambda_{G2}\) is 2.89.

IV. USING M-TREE FOR CLUSTERING AND SIMILARITY SEARCH IN GRAPH DATABASES

Suppose that we have a graph database with \(n\) protein structures. Each protein structure is represented by a graph. The normalized Laplacian representation of adjacency matrix for every graph is calculated. Then we use Jacobi rotation algorithm to calculate spectral vectors. For representing \(n\) protein structures, we use \(n\) spectral vectors. Let \(L_{\text{max}}\) be the maximum number of components of \(n\) spectral vectors. We lengthen all spectral vectors with the number of components smaller than \(L_{\text{max}}\) by padding with 0 at the right of vectors. A spectral vector is a data object of database. The M-tree is used for clustering spectral vectors representing the protein structure [4]. The M-tree partitions objects on the basis of their relative distances (Euclidean distance between spectral vectors). The M-tree organizes the data objects into fixed nodes. Each nodes can store up to \(M\) entries (the capacity of M-tree nodes). The data objects are stored in leaf nodes, whereas internal nodes store the so-called routing objects. A routing object is a database object to which a routing role is assigned by a specific promotion algorithm. An entry for a routing object \(Or\) also includes a pointer denoted \(ptr(T(Or))\), which refers the root of a sub-tree, \(T(Or)\), called the covering tree of \(Or\) (see Fig. 6). A routing object \(Or\) hence defines a region in the metric space \(M\), centered on \(Or\) and with radius \(r(Or)\). Finally, a routing object \(O\) is associated with a radius \(r(Or)\) from \(Or\), \(r(Or) > 0\) and \(r(Or)\) is called the covering radius of \(Or\). Starting from the root node and recursively traversing all the paths which can not be excluded from leading to objects satisfying \(d(Oj,Q) < r(Q)\) [13],[14].

The similarity query \(\text{SimQuery}(Q,r(Q),C)\) requests for all database objects such that \(d(Oj,Q) < r(Q)\). Algorithm \(\text{SimQuery}\) starts from the root node and recursively traverses all the paths which can not be excluded from leading to objects satisfying \(d(Oj,Q) < r(Q)\) [13],[14].

V. EXPERIMENT AND DISCUSSION

A. Discussion of the Accuracy of M-tree Clustering

Classification of protein domains based on their tertiary structure provides a valuable resource that can be used to understand protein function and evolutionary relationships. SCOP is the most widely used database. SCOP is hierarchically organized and protein domains are used as basic units of classification. We recognize that a manual method was used to produce SCOP, so the quality of classification is very high. We use SCOP as a gold standard for measuring the quality of our proposed method. We also evaluated the quality of clusters using a measure called "cluster purity"[1]. It is 1 when all domains in the same cluster have perfect agreement in their class labels, and it is defined as:

\[
\text{ClusterPurity}(M,S) = \frac{1}{N} \sum_{A \in M} \max_{B \in S} \frac{|A \cap B|}{|A|}
\]

In the above equation, \(A\) is a cluster in the set of clusters \(M\) created by M-Tree, \(B\) is a cluster in the set of \(S\) families of SCOP and \(N\) is the cardinality of \(M\). The SCOP structure is very large, so we select only the proteins and the clusters belonging to the test set. It means that, we have:

\[
\bigcup_{A \in M} A = \bigcup_{B \in S} B
\]

Cluster Purity is a value between 0 and 1. If cluster value is 1 then all the cluster \(A\) of \(M\) will be the subset of a cluster \(B\) of \(S\). The higher value of Cluster Purity, the higher quality of cluster.

We use the proteins structural classification from SCOP database (see more at http://scop.mrc-lmb.cam.ac.uk/scop/data/scop.b.html) as gold standard to evaluate our method. We used both prokaryotic and eukaryotic serine proteases in the super family ‘Trypsin-like serine proteases’ (see more at http://scop.mrc-lmb.cam.ac.uk/scop/data/scop.b.c.hh.b.A.A.html) to test M-tree method. SCOP hierarchical structure [11] in the Superfamily ‘Trypsin-like serine proteases’ is described as follows:

Trypsin-like serine proteases [50494] (4)
1. Prokaryotic proteases [50495]
 1.1 Achromobacter protease [50496]

Fig. 6 The covering tree of \(Or\).
1.1.1. Achromobacter lyticus [50497] (2)
1.1arb
1.2arb
1.2 alpha-Lytic protease [50498]
1.2.1. Lysobacter enzymogenes [50499] (41)
1.2h5c
1.2ssx
1.3. Protease A [50500]
1.3.1. Streptomyces griseus [50501] (5)
1.2sga
2.3sga
Eukaryotic proteases [50514]
2.1 Trypsin(ogen) [50515]
2.1. Cow (Bos taurus) [50516] (273)
1.1hj9
2.1utn
2.2 Pig (Sus scrofa) [50517] (26)
1.2a31
2.2a32
Viral proteases [50596]
Viral cysteine protease of trypsin fold [50603]

According to SCOP, we have these proteins following arrangement into groups ([50497], [50499], [50501], etc.). We chose randomly some proteins belongs to groups and downloaded the accessible codes of proteins (the PDB files). The next, we built a database of protein graphs in DBMS SQL Server 2005 and generated links between nodes based on the proximity of amino acids (residues) in peptide chain to represent protein structure by graph. Neighboring residues within a physical interaction radius, we chose the threshold to vary over values ranging from 6.5–8.5 Å and then used Jacobi rotation algorithm to calculate the eigenvalues of normalized Laplacian representation of adjacency matrix. Some eigenvalues of protein 1dua are shown in Fig. 7.

We chose a test data set with 100 proteins. Let \(S = \{ S_1, S_2, \ldots, S_9 \} \) be a set of clusters of SCOP containing these proteins. Then, we use M-tree for clustering these proteins. Let \(M = \{ M_1, M_2, M_3, \ldots, M_8 \} \) be a set of clusters of M-Tree. We use the formula of Cluster Purity to calculate the values in Table II. In this table, the value of each cell is ratio between the cardinality of the intersection between cluster \(M_i \) and \(S_j \) and the cardinality of cluster \(M_i \). The last row contains the maximum value for each column.

<p>| TABLE II |</p>
<table>
<thead>
<tr>
<th>THE CLUSTER PURITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_1)</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>(S_1)</td>
</tr>
<tr>
<td>(S_3)</td>
</tr>
<tr>
<td>(S_3)</td>
</tr>
<tr>
<td>(S_4)</td>
</tr>
<tr>
<td>(S_5)</td>
</tr>
<tr>
<td>(S_7)</td>
</tr>
<tr>
<td>(S_7)</td>
</tr>
<tr>
<td>(S_7)</td>
</tr>
<tr>
<td>(\text{Max})</td>
</tr>
</tbody>
</table>

Using this measure, the cluster purity of the M-Tree clusters is as follows:

\[
\frac{1}{8} (0.75 + 0.5 + 1 + 1 + 1 + 0.33 + 1) = 0.8225
\]

This high cluster purity value shows that our clustering method produces clusters that have a high degree of agreement with the SCOP classes. When processing a similarity search, a query is submitted to the M-tree. A graph representing for this protein will be created and the spectral vector for this matrix will be generated by Jacobi rotation algorithm. After padding this spectral vector with 0 to lengthen the length of vector to LMax, this vector will be used as a query for searching in M-tree.

B. Discussion of Processing Time

The time complexity of Jacobi rotation algorithm for calculating eigenvalues is polynomial degree. The time duration of creating the graphs from PDB data and the spectral vectors for 100 protein structures is about 30 minutes. The time duration of creating M-trees for 100 spectral vectors is 2 minutes. We believe that this time duration is reasonable. Moreover, M-tree is a fast structure for indexing a large volume of data [12],[13]. So, we chose M-tree for clustering and similarity search in protein structure databases. Besides, M-tree is an incremental algorithm, so we can add more protein structure incrementally without running M-tree for whole new data.

VI. CONCLUSION

In this paper, we propose a method of graph clustering and
searching in protein structure database. Jacobi rotation algorithm is used to calculate the eigenvalues of the normalized Laplacian representation of adjacency matrix of graph representing protein structure. We use Euclidean distance between two spectral vectors to measure similarity between graphs. A M-tree structure is used to index the spectral vectors and to increase efficiency of similarity searching in protein structure graph database. Experiment results encourage us to develop more applications of graph indexing and graph searching.

ACKNOWLEDGMENT

We would like to express our thanks to the Department of Information Systems, University of Information Technology and School of Computing, NUS for their support and the valuable comments of the reviewers.

REFERENCES

[18] X. Yan, J. Han (2002). gSpan: Graph-based substructure pattern mining, ICDM, 2002
[19] Xiafeng Yan, Philip S. Yu, Jiawei Han (2004). Graph indexing: A Frequent Structure-based Approach. SIGMOD 2004