Vibration of FGM Cylindrical Shells under Effect Clamped-simply Support Boundary Conditions using Hamilton's Principle

M.R.Isvandzibaei *, E.Bidokh, M.R.Alinaghizadeh, A.Nasirian and A.Moarrefzadeh

Abstract—In this paper a study on the vibration of thin cylindrical shells with ring supports and made of functionally graded materials (FGMs) composed of stainless steel and nickel is presented. Material properties vary along the thickness direction of the shell according to volume fraction power law. The cylindrical shells have ring supports which are arbitrarily placed along the shell and impose zero lateral deflections. The study is carried out based on third order shear deformation shell theory (T.S.D.T). The analysis is carried out using Hamilton's principle. The governing equations of motion of FGM cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of ring support position and the influence of boundary conditions. The present analysis is validated by comparing results with those available in the literature.

Keywords—Vibration, FGM, Cylindrical shell, Hamilton's principle, Ring support.

I. INTRODUCTION

CYLINDRICAL shells have found many applications in the industry. They are often used as load bearing structures for aircrafts, ships and buildings. Understanding of vibration behavior of cylindrical shells is an important aspect for the successful applications of cylindrical shells. Researches on free vibrations of cylindrical shells have been carried out extensively [1-5]. Recently, the present authors presented studies on the influence of boundary conditions on the frequencies of a multi-layered cylindrical shell [6]. In all the above works, different thin shell theories based on Love–hypothesis were used. Vibration of cylindrical shells with ring support is considered by Loy and Lam [7]. The concept of functionally graded materials (FGMs) was first introduced in 1984 by a group of materials scientists in Japan [8-9] as a means of preparing thermal barrier materials. Since then, FGMs have attracted much interest as heat-shielding materials. FGMs are made by combining different materials using power metallurgy methods [10]. They possess variations in constituent volume fractions that lead to continuous change in the composition, microstructure, porosity, etc., resulting in gradients in the mechanical and thermal properties [11-12]. Vibration study of FG shell structures is important. However, study of the vibration of FGM shells with ring supports is limited. In this paper a study on the vibration of FG cylindrical shells is presented. The FGMs considered are composed of stainless steel and nickel where the volume fractions follow a power-law distribution. The study is carried out based on third order shear deformation shell theory. The analysis is carried out using Hamilton’s principle. Studies are carried out for cylindrical shells with clamped-simply support (C-SS) boundary conditions. Results presented include the frequency characteristics of cylindrical shells, the influence of constituent volume fractions and the influence of boundary conditions. The present analysis is validated by comparing results with others in the literature.

II. FUNCTIONALLY GRADED MATERIALS

For the cylindrical shell made of FGM the material properties such as the modulus of elasticity E, Poisson ratio $ν$ and the mass density $ρ$ are assumed to be functions of the volume fraction of the constituent materials when the coordinate axis across the shell thickness is denoted by z and measured from the shell’s middle plane. The functional relationships between $E, ν$ and $ρ$ with z for a stainless steel and nickel FGM shell are assumed as [13].

$$E = (E_1 - E_2)\left(\frac{2Z + h}{2h}\right)^N + E_2 \quad (1)$$

$$ν = (ν_1 - ν_2)\left(\frac{2Z + h}{2h}\right)^N + ν_2 \quad (2)$$

$$ρ = (ρ_1 - ρ_2)\left(\frac{2Z + h}{2h}\right)^N + ρ_2 \quad (3)$$

The strain-displacement relationships for a thin shell [14].

Abstract

In this paper a study on the vibration of thin cylindrical shells with ring supports and made of functionally graded materials (FGMs) composed of stainless steel and nickel is presented. Material properties vary along the thickness direction of the shell according to volume fraction power law. The cylindrical shells have ring supports which are arbitrarily placed along the shell and impose zero lateral deflections. The study is carried out based on third order shear deformation shell theory (T.S.D.T). The analysis is carried out using Hamilton’s principle. The governing equations of motion of FGM cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of ring support position and the influence of boundary conditions. The present analysis is validated by comparing results with those available in the literature.

Keywords

Vibration, FGM, Cylindrical shell, Hamilton’s principle, Ring support.

I. INTRODUCTION

CYLINDRICAL shells have found many applications in the industry. They are often used as load bearing structures for aircrafts, ships and buildings. Understanding of vibration behavior of cylindrical shells is an important aspect for the successful applications of cylindrical shells. Researches on free vibrations of cylindrical shells have been carried out extensively [1-5]. Recently, the present authors presented studies on the influence of boundary conditions on the frequencies of a multi-layered cylindrical shell [6]. In all the above works, different thin shell theories based on Love–hypothesis were used. Vibration of cylindrical shells with ring support is considered by Loy and Lam [7]. The concept of functionally graded materials (FGMs) was first introduced in 1984 by a group of materials scientists in Japan [8-9] as a means of preparing thermal barrier materials. Since then, FGMs have attracted much interest as heat-shielding materials. FGMs are made by combining different materials using power metallurgy methods [10]. They possess variations in constituent volume fractions that lead to continuous change in the composition, microstructure, porosity, etc., resulting in gradients in the mechanical and thermal properties [11-12]. Vibration study of FG shell structures is important. However, study of the vibration of FGM shells with ring supports is limited. In this paper a study on the vibration of FG cylindrical shells is presented. The FGMs considered are composed of stainless steel and nickel where the volume fractions follow a power-law distribution. The study is carried out based on third order shear deformation shell theory. The analysis is carried out using Hamilton’s principle. Studies are carried out for cylindrical shells with clamped-simply support (C-SS) boundary conditions. Results presented include the frequency characteristics of cylindrical shells, the influence of constituent volume fractions and the influence of boundary conditions. The present analysis is validated by comparing results with others in the literature.

II. FUNCTIONALLY GRADED MATERIALS

For the cylindrical shell made of FGM the material properties such as the modulus of elasticity E, Poisson ratio $ν$ and the mass density $ρ$ are assumed to be functions of the volume fraction of the constituent materials when the coordinate axis across the shell thickness is denoted by z and measured from the shell’s middle plane. The functional relationships between $E, ν$ and $ρ$ with z for a stainless steel and nickel FGM shell are assumed as [13].

$$E = (E_1 - E_2)\left(\frac{2Z + h}{2h}\right)^N + E_2 \quad (1)$$

$$ν = (ν_1 - ν_2)\left(\frac{2Z + h}{2h}\right)^N + ν_2 \quad (2)$$

$$ρ = (ρ_1 - ρ_2)\left(\frac{2Z + h}{2h}\right)^N + ρ_2 \quad (3)$$

The strain-displacement relationships for a thin shell [14].
used in the present study is based on the following equations can be reduced by satisfying the stress-free
\[\epsilon_{ii} = \frac{1}{A_1(1 + \frac{\alpha_1}{R_1})} \left[\frac{\partial u_i}{\partial a_1} + U_2 \frac{\partial a_2}{A_2 \partial a_2} + U_3 A_1 \right] \]
\[\epsilon_{22} = \frac{1}{A_2(1 + \frac{\alpha_2}{R_2})} \left[\frac{\partial U_2}{\partial a_2} + U_2 \frac{\partial a_1}{A_1 \partial a_1} + U_3 A_2 \right] \]
\[\epsilon_{33} = \frac{U_1}{\partial a_3} \]
\[\alpha_{11} \]
\[\alpha_{11} \]
\[\alpha_{11} \]
\[U_3 = u_3(a_1, a_2) \]

Where \(C_1 = \frac{4}{3h} \). Substituting Eq. (12) into nonlinear strain-displacement relation (4) - (9), it can be obtained for the third-order theory of Reddy

\[\epsilon_{i1} \]
\[\epsilon_{i2} \]

where

\[A_1 = \frac{\partial \varphi}{\partial a_1} \]
\[A_2 = \frac{\partial \varphi}{\partial a_2} \]

Fig. 1: Geometry of a generic shell

\[U_1 = u_1(a_1, a_2) + a_1 \phi_1(a_1, a_2) + a_2 \psi_1(a_1, a_2) \]
\[U_2 = u_2(a_1, a_2) + a_1 \phi_2(a_1, a_2) + a_2 \psi_2(a_1, a_2) \]
\[U_3 = u_3(a_1, a_2) \]

These equations can be reduced by satisfying the stress-free conditions on the top and bottom faces of the laminates, which are equivalent to \(\epsilon_{i3} = \epsilon_{23} = 0 \) at \(z = \frac{h}{2} \). Thus,
\begin{align*}
\begin{bmatrix} \gamma_{11} \\ \gamma_{12} \end{bmatrix} &= \begin{bmatrix} \frac{\nu + \phi + \frac{\partial u_1}{\partial z}}{R_1} \\ \frac{\nu + \phi + \frac{\partial u_2}{\partial z}}{R_2} \end{bmatrix} \\
\gamma_{13} &= \begin{bmatrix} \frac{\partial u_1}{\partial r} \\ \frac{\partial u_2}{\partial r} \end{bmatrix} \\
\gamma_{23} &= \begin{bmatrix} \frac{\partial u_1}{\partial \theta} \\ \frac{\partial u_2}{\partial \theta} \end{bmatrix}
\end{align*}
(20)

Where $\gamma^{\alpha \beta}$ are the membranes strains and $(k,k',\gamma^3,\gamma^3')$ are the bending strains, known as the curvatures.

III. FORMULATION

Consider a cylindrical shell as shown in Fig. 2, where R is the radius, L the length and h the thickness of the shell. The reference surface is chosen to be the middle surface of the cylindrical shell where an orthogonal coordinate system x, θ, z is fixed. The displacements of the shell with reference to this coordinate system are denoted by U_1, U_2 and U_3 in the x, θ and z directions, respectively.

![Fig. 2: Geometry of a cylindrical shell](image)

For a thin cylindrical shell, the stress-strain relationship is defined as

\begin{align*}
\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \end{bmatrix} &= \begin{bmatrix} Q_{11} & Q_{12} & 0 & 0 & 0 \\ Q_{21} & Q_{22} & 0 & 0 & 0 \\ 0 & 0 & Q_{33} & 0 & 0 \\ 0 & 0 & 0 & Q_{12} & 0 \\ 0 & 0 & 0 & 0 & Q_{23} \end{bmatrix} \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ \gamma_{12} \\ \gamma_{23} \end{bmatrix}
\end{align*}
(21)

For a isotropic cylindrical shell the reduced stiffness $Q_{ij}(i,j = 1,2,6)$ are defined as

\begin{align*}
Q_{11} &= Q_{22} = E \frac{1}{1 - \nu^2} , \quad Q_{12} = \frac{\nu E}{1 - \nu^2} \\
Q_{44} &= Q_{55} = Q_{66} = \frac{E}{2(1 + \nu)}
\end{align*}
(22)

where E is the Young's modulus and ν is Poisson's ratio.

Defining the extensional, bending, coupling, and higher-order stiffness. For a thin cylindrical shell the force and moment results are defined as

\begin{align*}
\begin{bmatrix} N_{11} \\ N_{22} \\ N_{12} \end{bmatrix} &= \begin{bmatrix} k_1 & k_{12} & 0 \\ k_{12} & k_{22} & 0 \\ 0 & 0 & k_{33} \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \end{bmatrix} \\
\begin{bmatrix} P_{11} \\ P_{22} \end{bmatrix} &= \begin{bmatrix} \frac{h}{2} & 0 \\ 0 & \frac{h}{2} \end{bmatrix} \begin{bmatrix} \alpha_1 \alpha_3 d\alpha_3 \\ \alpha_2 \alpha_3 d\alpha_3 \end{bmatrix} \\
\begin{bmatrix} Q_{11} \\ Q_{22} \end{bmatrix} &= \begin{bmatrix} \frac{h}{2} & 0 \\ 0 & \frac{h}{2} \end{bmatrix} \begin{bmatrix} \alpha_1^2 d\alpha_3 \\ \alpha_2^2 d\alpha_3 \end{bmatrix}
\end{align*}
(25)

IV. THE EQUATIONS OF MOTION FOR VIBRATION OF A GENERIC SHELL

The equations of motion for vibration of a generic shell can be derived by using Hamilton's principle which is described by

\begin{align*}
\delta \int_{t_1}^{t_2} (\Pi - K) \, dt &= 0 \\
\Pi &= U - V
\end{align*}
(28)

Where K, Π, U and V are the total kinetic, potential, strain and loading energies, t_1 and t_2 are arbitrary time. The kinetic, strain and loading energy of a cylindrical shell can be written as:

\begin{align*}
K &= \frac{1}{2} \iiint \rho (\dot{U}_1^2 + \dot{U}_2^2 + \dot{U}_3^2) \, dV \\
U &= \iiint \left(\sigma_{11} \epsilon_{11} + \sigma_{22} \epsilon_{22} + \sigma_{33} \epsilon_{33} + \sigma_{12} \epsilon_{12} + \sigma_{23} \epsilon_{23} + \sigma_{31} \epsilon_{31} \right) \, dV \\
V &= \iiint \left(q_x \delta U_1 + q_y \delta U_2 + q_z \delta U_3 \right) A_z \, dx \, dz \, \delta x
\end{align*}
(29)

The infinitesimal volume is given by

\begin{align*}
\delta V &= A_z \delta x \, dx \, \delta z
\end{align*}
(30)

with the use of Eqs. (11)-(20) and substituting into Eq. (28), we get the equations of motions a generic shell.

\begin{align*}
\frac{\partial (\delta N_{11} A_z)}{\partial x} + \frac{\partial (\delta N_{12} A_z)}{\partial \theta} &= \frac{\partial N_{11} A_z}{\partial x} \frac{\partial (\delta \sigma_{11})}{\partial x} + \frac{\partial (\delta \sigma_{12})}{\partial \theta} + \frac{\partial (\delta \sigma_{21})}{\partial x} + \frac{\partial (\delta \sigma_{22})}{\partial \theta} + \frac{\partial (\delta \sigma_{31})}{\partial x} + \frac{\partial (\delta \sigma_{32})}{\partial \theta} \\
\frac{\partial (\delta P_{11} A_z)}{\partial x} + \frac{\partial (\delta P_{12} A_z)}{\partial \theta} &= \frac{\partial P_{11} A_z}{\partial x} \frac{\partial (\delta \alpha_3)}{\partial x} + \frac{\partial (\delta \alpha_3)}{\partial \theta} + \frac{\partial (\delta \alpha_3)}{\partial x} + \frac{\partial (\delta \sigma_{32})}{\partial \theta}
\end{align*}
\[
\frac{\partial}{\partial z} \left(\frac{\partial \psi}{\partial z} \right) + \frac{\partial^2 \psi}{\partial \alpha^2} = -\frac{\partial^2 \psi}{\partial \alpha^2}
\]

For Eqs. (33) – (37) are defining as
\[
I_1 = \int \frac{h}{z} \rho \alpha \, d\alpha \, d\alpha
\]

V. EQUATIONS OF MOTION FOR VIBRATION OF CYLINDRICAL SHELL

The curvilinear coordinates and fundamental from parameters for a cylindrical shell are:
\[
R_2 = \frac{1}{a} R, A_2 = a\alpha, \alpha_2 = \alpha, \alpha_3 = \theta \alpha_1 = x
\]

Substituting relationship (39) into Eqs. (33)-(37) the equations of motions for vibration of cylindrical shell with the third-order theory of Reddy are converted to
\[
a \frac{\partial^2 N_{11}}{\partial z^2} + \frac{\partial^2 N_{12}}{\partial \theta^2} = I_1 \ddot{u}_1 + (I_1 - C_1 I_2) \ddot{\phi}_1 \frac{\partial \psi}{\partial \theta}
\]

\[
\frac{\partial}{\partial \theta} \left(\frac{\partial^2 N_{12}}{\partial \theta^2} \right) + \frac{\partial^2 \psi}{\partial \alpha^2} = -\frac{1}{a} C_1 I_1 \ddot{u}_1 - \frac{1}{a} I_1 \ddot{\phi}_1 \frac{\partial \psi}{\partial \theta}
\]

\[
\frac{\partial}{\partial z} \left(\frac{\partial^2 N_{12}}{\partial z^2} \right) + \frac{\partial^2 \psi}{\partial \alpha^2} = -\frac{1}{a} C_1 I_1 \ddot{u}_1 - \frac{1}{a} I_1 \ddot{\phi}_1 \frac{\partial \psi}{\partial \theta}
\]

The displacement fields for a FG cylindrical shell and the displacement fields which satisfy these boundary conditions can be written as

\[
u_1 = A \frac{\partial \phi(x)}{\partial x} \cos(\alpha \theta) \cos(\alpha \vartheta)
\]

\[
u_2 = B \phi(x) \sin(\alpha \theta) \cos(\alpha \vartheta)
\]

\[
u_3 = C \phi(x) \cos(\alpha \theta) \cos(\alpha \vartheta)
\]

\[
\phi_1 = \frac{\partial \phi(x)}{\partial \theta} \sin(\alpha \theta) \cos(\alpha \vartheta)
\]

\[
\phi_2 = E \phi(x) \sin(\alpha \theta) \cos(\alpha \vartheta)
\]

where, \(A, B, C, D \) and \(E \) are the constants denoting the amplitudes of the vibrations in the \(x, \theta \) and \(z \) directions, \(\phi_1 \) and \(\phi_2 \) are the displacement fields for higher order deformation theories for a cylindrical shell, \(\phi(x) \) is the axial function that satisfies the geometric boundary conditions. The axial function \(\phi(x) \) is chosen as the beam function as

\[
\phi(x) = \gamma_1 \cos^2 \frac{x}{L} + \gamma_2 \cos \frac{x}{L} \sin \frac{x}{L}
\]
The geometric boundary conditions for free boundary conditions can be expressed mathematically in terms of \(\phi(x) \):

- Clamped boundary condition
 \[\phi(x) = \phi'(x) = 0 \] (47)
- Simply support boundary condition
 \[\phi(0) = \phi'(L) = 0 \] (48)

Substituting Eq. (45) into Eqs. (40) - (44) for third order theory we can be expressed

\[\det(C_{ij} - M_{ij} \omega^2) = 0 \] (49)

Expanding this determinant, a polynomial in even powers of \(\omega \) is obtained

\[\beta_1 \omega^{10} + \beta_2 \omega^8 + \beta_3 \omega^6 + \beta_4 \omega^4 + \beta_5 \omega^2 + \beta_6 = 0 \] (50)

where \(\beta_i (i = 1, 2, 3, 4, 5) \) are some constants. Eq. (50) is solved five positive and five negative roots are obtained. The five positive roots obtained are the natural angular frequencies of the cylindrical shell based third-order theory. The smallest of the five roots is the natural angular frequency studied in the present study.

VI. RESULTS AND DISCUSSION

To validate the present analysis, results for cylindrical shells are compared with Loy and Lam [15] and with M.R.Isvandzibaei [16]. The comparisons show that the present results agreed well with those in the literature.

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>(\omega) (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.376687</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.472224</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.496101</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.506079</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.513007</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.520445</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.530317</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.544065</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.562919</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0.587923</td>
</tr>
</tbody>
</table>

VII. CONCLUSIONS

A study on the free vibration of functionally graded (FG) cylindrical shell composed of stainless steel and nickel has been presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The study is carried out using third order shear deformation theory. The analysis is carried out using Hamilton’s principle. Studies are carried out for cylindrical shells with clamped-simply support (C-SS) boundary conditions. The study showed that in this boundary conditions the frequency first decreases and then increases as the circumferential wave number \(n \) increases. The results showed that one could easily vary the natural frequency of the FG cylindrical shell by varying the volume fraction.

REFERENCES

