Primary subgroups and \(p \)-nilpotency of finite groups

Changwen Li

Abstract—In this paper, we investigate the influence of \(S \)-semipermutable and weakly \(S \)-supplemented subgroups on the \(p \)-nilpotency of finite groups. Some recent results are generalized.

Keywords—\(S \)-semipermutable, weakly \(S \)-supplemented, \(p \)-nilpotent.

I. INTRODUCTION

All groups considered in this paper will be finite. We use conventional notions and notation, as in Huppert [1]. \(G \) denotes always a group, \([G]\) is the order of \(G \), \(\pi(G) \) denotes the set of all primes dividing \([G]\) and \(G_p \) is a Sylow \(p \)-subgroup of \(G \) for some \(p \in \pi(G) \). Two subgroups \(H \) and \(K \) of \(G \) are said to be permutable if \(HK = KH \). A subgroup \(H \) of \(G \) is said to be \(S \)-permutable (or \(S \)-quasinormal, \(S \)-quasinormal) in \(G \) if \(H \) permutes with every Sylow subgroup of \(G \). This concept was introduced by Kegel in [2]. More recently, Q. Zhang and L. Wang generalized \(s \)-permutable subgroups to \(S \)-semipermutable subgroups. \(H \) is said to be \(S \)-semipermutable in \(G \) if \(HG_p = G_pH \) for any Sylow \(p \)-subgroup \(G_p \) of \(G \) with \((p, |H|) = 1 \) [3]. L. Wang and Y. Wang [4] showed the following theorem: Let \(G \) be a group and \(P \) a Sylow \(p \)-subgroup of \(G \), where \(p \) is the smallest prime dividing \([G]\). If all maximal subgroups of \(P \) are \(S \)-semipermutable in \(G \), then \(G \) is \(p \)-nilpotent. As another generalization of \(s \)-permutable subgroups, Skiba [5] introduced the following concept: A subgroup \(H \) of \(G \) is called weakly \(S \)-supplemented in \(G \) if there is a subgroup \(T \) of \(G \) such that \(G = HT \) and \(H \cap T \leq HS_G \), where \(HS_G \) is the subgroup of \(H \) generated by all those subgroups of \(H \) which are \(S \)-quasinormal in \(G \). In fact, this concept is also a generalization of \(s \)-supplemented subgroups given in [6], Skiba proposed in [5] two open questions related to weakly \(S \)-semipermutable subgroups. In this paper we are concerned with another problems in this context. There are examples to show that weakly \(S \)-supplemented subgroups are not \(S \)-semipermutable subgroups and in general the converse is also false. The aim of this article is to unify and improve some earlier results using \(S \)-semipermutable and weakly \(S \)-supplemented subgroups.

II. PRELIMINARIES

Lemma 2.1. Suppose that \(H \) is an \(S \)-semipermutable subgroup of a group \(G \) and \(N \) is a normal subgroup of \(G \). Then

1. \(H \) is \(S \)-semipermutable in \(K \) whenever \(H \leq K \leq G \).
2. If \(H \) is \(p \)-group for some prime \(p \in \pi(G) \), then \(HN/N \) is \(S \)-semipermutable in \(G/N \).
3. If \(H \leq O_p(G) \), then \(H \) is \(S \)-permutaable in \(G \).

Proof: (a) is [3, Property 1], (b) is [3, Property 2], and (c) is [3, Lemma 3].

Lemma 2.2. ([5], Lemma 2.10) Let \(H \) be a weakly \(S \)-supplemented subgroup of a group \(G \).

1. If \(H \leq L \leq G \), then \(H \) is weakly \(S \)-supplemented in \(L \).
2. If \(N \unlhd G \) and \(N \leq H \leq G \), then \(HN/N \) is weakly \(S \)-supplemented in \(G/N \).
3. If \(H \) is a \(\pi \)-subgroup and \(N \) is a normal \(\pi \)-subgroup of \(G \), then \(HN/N \) is weakly \(S \)-supplemented in \(G/N \).

Lemma 2.3. ([7], A, 1.2) Let \(U, V, W \) be subgroups of a group \(G \). Then the following statements are equivalent:

1. \(U \cap VW = (U \cap V)(U \cap W) \).
2. \(UV \cap UW = U(V \cap W) \).

Lemma 2.4. ([8], Lemma 2.2) If \(P \) is an \(s \)-permutable \(p \)-subgroup of a group \(G \) for some prime \(p \), then \(N_G(P) \geq O^p(G) \).

Lemma 2.5. ([4], Theorem 3.3) Let \(P \) be a Sylow \(p \)-subgroup of a group \(G \), where \(p \) is the smallest prime dividing \([G]\). If every maximal subgroup of \(P \) is \(S \)-semipermutable in \(G \), then \(G \) is \(p \)-nilpotent.

Lemma 2.6. ([10], Lemma 3.4) Let \(H \) be a normal subgroup of a group \(G \) such that \(G/H \) is \(p \)-nilpotent and let \(P \) be a Sylow \(p \)-subgroup of \(H \), where \(p \) is the smallest prime divisor of \(|G| \). If \(|P| \leq p^2 \) and \(G \) is \(A_4 \)-free, then \(G \) is \(p \)-nilpotent.

Lemma 2.7. ([1], IV, 5.4) Suppose that \(G \) is a group which is not \(p \)-nilpotent but whose proper subgroups are all \(p \)-nilpotent. Then \(G \) is a group which is not nilpotent but whose proper subgroups are all nilpotent.

Lemma 2.8. ([1], III, 5.2) Suppose \(G \) is a group which is not \(p \)-nilpotent but whose proper subgroups are all \(p \)-nilpotent. Then

(a) \(G \) has a normal Sylow \(p \)-subgroup \(P \) for some prime \(p \) and \(G = PQ \), where \(Q \) is a non-normal cyclic \(q \)-subgroup for some prime \(q \neq p \).
(b) \(P/\Phi(P) \) is a minimal normal subgroup of \(G/\Phi(P) \).
(c) If \(P \) is non-abelian and \(p > 2 \), then the exponent of \(P \) is \(p \); if \(P \) is non-abelian and \(p = 2 \), then the exponent of \(P \) is 4.
(d) If \(P \) is abelian, then the exponent of \(P \) is \(p \).
(e) \(Z(G) = \Phi(P) \times \Phi(Q) \).

III. MAIN RESULTS

Theorem 3.1. Let \(p \) be the smallest prime divisor of \([G]\) and \(G_p \) be a Sylow \(p \)-subgroup of a group \(G \). If every
maximal subgroup of G_p is either weakly S-supplemented or S-semipermutable in G, then G is p-nilpotent.

Proof: Suppose that the theorem is false and let G be a counterexample of minimal order. We will derive a contradiction in several steps.

(1) G has a unique minimal normal subgroup N and G/N is p-nilpotent. Moreover $\Phi(G) = 1$.

Let N be a minimal normal subgroup of G. Consider G/N. We will show that G/N satisfies the hypothesis of the theorem. Let M/N be a maximal subgroup of G_pN/N. It is easy to see $M = G_1N$ for some maximal subgroup G_1 of G_p. It follows that $G_1N \cap N = G_pN$ is a Sylow p-subgroup of N. If G_1 is S-semipermutable in G, then M/N is S-semipermutable in G by Lemma 2.1. If G_1 is weakly S-supplemented in G, then there is a subgroup T of G such that $G = G_1T$ and $G_1 \cap N \leq (G_1)_G$. So $G/N = M/N \cdot T/N = G_1^N/N \cdot T/N$. Since $\langle (N : N \cdot T \cap N) : (N : T \cap N) \rangle = 1$, we have

$$(G_1 \cap N)(T \cap N) = N = N \cap G = N \cap G_1T.$$

By Lemma 2.3, $(G_1N)(T \cap N) = (G_1T)N$. It follows that $(G_1N \cap N)(T \cap N)/N = (G_1N \cap T)(N \cap N) \leq (G_1)_G$. Hence M/N is weakly S-supplemented in G/N. Therefore, G/N satisfies the hypothesis of the theorem. The choice of G yields that G/N is p-nilpotent. Consequently the uniqueness of N and the fact that $\Phi(G) = 1$ are obvious.

(2) $O_p'(G) = 1$. If $O_p'(G) \neq 1$, then $N \leq O_p'(G)$ by step (1). Since $G/O_p'(G) \cong (G/N)/(O_p'(G)/N)$ is p-nilpotent, G is p-nilpotent, a contradiction.

(3) $O_p(G) = 1$. If $O_p(G) \neq 1$. Step (1) yields $N \leq O_p(G)$ and $\Phi(O_p(G)) \leq \Phi(G) = 1$. Therefore, G has a maximal subgroup M such that $G = MN$ and $G/N \cong M$ is p-nilpotent. Since $O_p(G) \cap M$ is normalized by N and M, $O_p(G)/M$ is normal in G. The uniqueness of N yields $N = O_p(G)$. Clearly, $G_p = N(G_p \cap M)$. Furthermore $G_p \cap M < G_p$, thus there exists a maximal subgroup G_1 of G_p such that $G_p \cap M \leq G_1$. Hence $G_p = NG_1$. By the hypothesis, G_1 is either S-semipermutable or weakly S-permutable in G. If we assume G_1 is S-semipermutable in G, then G_1M_p is a group for $q \neq p$. Hence

$$G_1 < M_p, M_q \cap \pi(q) \neq \emptyset \Rightarrow G_1M$$

is a group. Then $G_1M = M$ or G by maximality of M. If $G_1M = G$, then $G_p = G_p \cap G_1 = G_1(G_p \cap M) = G_1$, a contradiction. If $G_1M = M$, then $G_1 \leq M$. Therefore, $P_1 \cap M = N$ is of prime order. Then the p-nilpotency of G/N implies the p-nilpotency of G, a contradiction. Therefore we may assume G_1 is weakly S-supplemented in G. Then there is a subgroup T of G such that $G = G_1T$ and $G_1 \cap T \leq (G_1)_G$. From Lemma 2.4 we have $O_p(G) \leq N_G((G_1)_G)$. Since $(G_1)_G$ is subnormal in G, we have

$$G_1 \cap T \leq (G_1)_G \leq O_p(G) = N.$$

Thus $(G_1)_G \leq G_1 \cap N$ and $(G_1)_G \leq ((G_1)_G)^G = ((G_1)_G)^{O_p(G)} = ((G_1)_G)^G \leq (G_1 \cap N)^{O_p(G)} = G_1 \cap N \leq N$. It follows that $((G_1)_G)^{O_p(G)} = 1$ or $((G_1)_G)^{O_p(G)} = G_1 \cap N = N$. If $(G_1)_G = G_1 \cap N = N$, then $N \leq G_1$ and $G_p = NG_1 = G_1$, a contradiction. If $(G_1)_G \leq G_1$, then $G_1 \cap T = 1$ and so $T_p = p$. Hence T is p-nilpotent. Let T'_p be the normal p-complement of T. Since M is p-nilpotent, we may suppose M has a normal Hall p'-subgroup M_p and $M \leq N_G(M_p) \leq G$. The maximality of M implies that $M = N_G(M_p)$ or $N_G(M_p) = G$. If the latter holds, then $M_p \leq G$, and M_p is actually the normal p-complement of G, which is contrary to the choice of G. Hence we may assume $M = N_G(M_p)$. By applying a deep result of Gross([9], main Theorem) and Feit-Thompson’s theorem, there exists $g \in G$ such that $T'_p = M_p$. Hence $T^{g} \leq N_G(T'_p) = N_G(M_p) = G$. However, T'_p is normalized by T, so g can be considered as an element of G_1. Thus $G = G_1T^{g} = G_1M_p$ and $G_p = G_1(G_p \cap M) = G_1$, a contradiction.

(4) The final contradiction.

If every maximal subgroup of G_p is S-semipermutable in G, then G is p-nilpotent by Lemma 2.5, a contradiction. Thus there is a maximal subgroup G_1 of G_p such that G_1 is weakly S-supplemented in G. Then there exists a subgroup T of G such that $G = G_1T$ and

$$G_1 \cap T \leq (G_1)_G \leq O_p(G) = 1.$$

By [11, Theorem 2.2], G is not simple and G has a Hall p'-subgroup. Suppose $NG_p < G$, then NG_p satisfies the hypothesis of the theorem. The choice of G yields that N is p-nilpotent, a contradiction with steps (2) and (3). Therefore we may assume $G = NG_p$. Then we may suppose that N is a Hall p'-subgroup N_p. By Frattini’s argument, $G = N_G(N_p) = (G_p \cap N_p)N_pNG_p(N_p) = (G_p \cap N_p)NG_p(N_p)$ and so $G_p = G_p \cap G = G_p \cap (G_p \cap N_p)NG_p(N_p) = (G_p \cap N_p)(G_p \cap NG_p(N_p))$. Since $NG_p(N_p) < G$, it follows that $G_p \cap NG_p(N_p) < G_p$. Consider a maximal subgroup G_1 of G_1 such that $G_p \cap NG_p(G_1) = G_1$. Then $G_p = G_p \cap NG_p(G_1)$. By the hypothesis, G_1 is either S-semipermutable or weakly S-permutable in G. If G_1 is S-semipermutable in G, then $G_1NG_p(N_p) = G_1N_p$ forms a group. Since $G : G_1N_p = p$ and p is the smallest prime divisor of $|G|$, we have $G_1N_p \leq G$. By Frattini’s argument again, $G = G_1N_pNG_p(N_p) = G_1NG_p(N_p) < G$, a contradiction. Now assume that G_1 is weakly S-permutable in G. Then there is a subgroup T of G such that $G = G_1T$ and

$$G_1 \cap T \leq (G_1)_G \leq O_p(G) = 1.$$

Since $T'_p = p$, we have T is p-nilpotent. Let T'_p be the normal p-complement of T, then T'_p is a Hall p'-subgroup of G. A application of the result of Gross ([9], Main Theorem)
and Feit-Thompson’s theorem yields $T_{p'}$ and $N_{p'}$ are conjugate in G. Since $T_{p'}$ is normalized by T, there exists $g \in G$ such that $T_{p'}^g = N_{p'}$. Hence
\[G = (G_1T)^0 = G_1T^0 = G_1N_G(T_{p'}) = G_1N_G(N_{p'}) \]
and
\[G_p = G_{p'} \cap G = G_{p'} \cap G_1N_G(N_{p'}) = G_1(G_{p'} \cap N_G(N_{p'})) \leq G_1, \]
a contradiction.

Theorem 3.2. Let p be the smallest prime dividing the order of a group $|G|$ and G_p a Sylow p-subgroup of G. Suppose that G is A_4-free and every 2-maximal subgroup of G_p is either weakly S-supplemented or S-semipermutable in G. Then G is p-nilpotent.

Proof. Suppose that the theorem is false and let G be a counterexample of minimal order. We will derive a contradiction in several steps.

1. By Lemma 2.6, $|G_p| \geq p^3$ and so every 2-maximal subgroups G_2 of G_p is non-identity.
2. G has a unique minimal normal subgroup N such that G/N is p-nilpotent, Moreover $Φ(G) = 1$.
3. $O_p(G) = 1$.
4. $O_p(G) = 1$. If $O_p(G) = 1$. Step (3) yields $N \leq O_p(G)$ and $Φ(O_p(G)) \leq Φ(G) = 1$. Therefore, G has a maximal subgroup M such that $G = MN$ and $G/N \cong M$ is p-nilpotent. Since $O_p(G) \cap M$ is normalized by N and M, hence by G, the uniqueness of N yields $N = O_p(G)$. Clearly, $G_p = N(G_p \cap M)$. Furthermore $G_p \cap M < G_p$. If $G_p \cap M$ is a maximal subgroup of G_p, then N is a subgroup of order p. By applying [7, Lemma 2.8], we obtain that $N \leq Z(G)$. Since G/N is p-nilpotent, it follows that G is p-nilpotent, a contradiction. Therefore $G_p \cap N$ is contained in a 2-maximal subgroup G_2. By the hypothesis, G_2 is either S-semipermutable or weakly S-supplemented in G. If we assume G_2 is S-semipermutable in G, then G_2M_q is a group for $q \neq p$. Hence
\[G_2 < M_p, M_q | q ∈ Π(M), q \neq p > = G_2M \]
is a group. Then $G_2M = M$ or G by maximality of M. If $G_2M = M$, then $G_p = G_p \cap G_2M = G_2(G_p \cap M)$, a contradiction. If $G_2M = M$, then $G_2 ≤ M$. Therefore, $P_2 \cap N = 1$. Since $G_p = N_{P_2}$, we have $|N| = p^3$. Then the p-nilpotency of G/N implies the p-nilpotency of G by Lemma 2.6, a contradiction. Now we suppose G_2 is weakly S-supplemented in G. Then there is a subgroup T of G such that $G = G_2T$ and $G_2 \cap T ≤ (G_2)_G$. From Lemma 2.4 we have $O_p(G) ≤ N_G((G_2)_G)$. Since $O_p(G)$ is subnormal in G,
\[G_2 \cap T ≤ (G_2)_G ≤ O_p(G) = N. \]
Thus, $(G_2)_G ≤ G_1 \cap N$, where p_1 is a maximal subgroup of G_p, which contains G_2. Then
\[(G_2)_G ≤ ((G_2)_G)^0(G_2)_G = ((G_2)_G)^0(G_2)_G ≤ (G_1 \cap N)^0(G_2)_G = G_1 \cap N \leq N. \]
It follows that $((G_2)_G)^0 = 1$ or $((G_2)_G)^0 = G_1 \cap N = N$. If $((G_2)_G)^0 = G_1 \cap N = N$, then $G_2 ≤ G_1$ and $G_p = NG_1 = G_1$, a contradiction. If $((G_2)_G)^0$ is 1, then $G_2 \cap T = 1$ and so $|T_p| = p^2$. Hence T is p-nilpotent by Lemma 2.6. Let T_p be the normal p-complement of T. Since M is p-nilpotent, we may suppose M has a normal Hall p'-subgroup M_p and $M ≤ NG(M_p) ≤ G$. The maximality of M implies that $M = NG_2(M_p)$ or $NG(M_p) = G$. If the latter holds, then $M_p ≤ G$, M_p is actually the normal p-complement of G, which is contrary to the choice of G. Hence we must have $M = NG_2(M_p)$. By applying a deep result of Gross ([9], main Theorem) and Feit-Thompson’s theorem, there exists $g \in G$ such that $T^g = M_p$. Hence $T^g ≤ NG_2(T_p^g) = NG_2(M_p) = M$. However, T^g is normalized by T, so g can be considered as an element of G_2. Thus $G = G_2T^g = G_2M$ and $G_p = G_2(G_p \cap M) = G_1$, a contradiction.

5. The final contradiction.
If $NG_p < G$, then NG_p satisfies the hypothesis of the theorem. The choice of G yields that N is p-nilpotent, a contradiction with steps (4) and (5). Therefore we must have $G = NG_p$. Since G/N is a p-subgroup, we may assume G has a normal subgroup M such that $[G : M] = p$ and $N ≤ M$. Hence the maximal subgroups of G_p are all 2-maximal subgroups of G satisfying the hypotheses of the theorem. The choice of G yields that N is p-nilpotent, a contradiction with steps (4) and (5). Therefore we must have $G = NG_p$. Since G/N is a p-subgroup, we may assume G has a normal subgroup M such that $[G : M] = p$ and $N ≤ M$. Hence the maximal subgroups of G_p are all 2-maximal subgroups of G. By applying a deep result of Gross ([9], main Theorem) and Feit-Thompson’s theorem, there exists $g \in G$ such that $T^g = M_p$. Hence $T^g ≤ NG_2(T_p^g) = NG_2(M_p) = M$. However, T^g is normalized by T, so g can be considered as an element of G_2. Thus $G = G_2T^g = G_2M$ and $G_p = G_2(G_p \cap M) = G_1$, a contradiction.

Theorem 3.3. Suppose N is a normal subgroup of a group G such that G/N is p-nilpotent, where p is a fixed prime number. Suppose every subgroup of order p of N is contained in the hypercenter $Z_∞(G)$ of G. If $p = 2$, in addition, suppose every cyclic subgroup of order 4 of N is either weakly S-supplemented or weakly S-semipermutable, then G is p-nilpotent.

Proof. Suppose that the theorem is false, and let G be a counterexample of minimal order.

1. The hypotheses are inherited by all proper subgroups, thus G is a group which is not p-nilpotent but whose proper subgroups are all p-nilpotent.

In fact, $K < G$, since G/N is p-nilpotent, $K/N K/N \cong K/N$ is also p-nilpotent. The cyclic subgroup of order p of $K \cap N$ is contained in $Z_∞(G) \cong K \leq Z_∞(K)$, the cyclic subgroup of order 4 of $K \cap N$ is either weakly S-supplemented or S-semipermutable in G, then is either weakly S-supplemented or S-semipermutable in G by Lemmas 2.1 and 2.2. Thus $K, K \cap N$ satisfy the hypotheses of the theorem in any case, so K is p-nilpotent, therefore G is a group which is not p-nilpotent but whose proper subgroups
are all p-nilpotent. By Lemmas 2.7 and 2.8, $G = PQ$, $P \leq G$ and $P/\Phi(P)$ is a minimal normal subgroup of $G/\Phi(P)$.

(2) $G/P \cap N$ is p-nilpotent.
Since $G/P \cong Q$ is nilpotent, G/N is p-nilpotent and $G/P \cap N \leq G/P \times G/N$, therefore $G/P \cap N$ is p-nilpotent.

(3) $P \leq N$.
If $P \not\leq N$, then $P \cap N < P$. So $Q(P \cap N) < QP = G$. Thus $Q(P \cap N)$ is nilpotent by (1), $Q(P \cap N) = Q \times (P \cap N)$. Since $G/P \cap N = P/P \cap N \cdot Q(P \cap N)/P \cap N$, it follows that $Q(P \cap N)/P \cap N \leq G/P \cap N$ by Step (2). So Q char $Q(P \cap N) \subseteq G$. Therefore, $G = P \times Q$, a contradiction.

(4) $p = 2$.
If $p > 2$, then $\exp(P) = p$ by (a) and Lemma 2.9. Thus $P = P \cap N \leq Z_\infty(G)$. It follows that $G/Z_\infty(G)$ is nilpotent, and so G is nilpotent, a contradiction.

(5) For every $x \in P \setminus \Phi(P)$, we have $o(x) = 4$.
If not, there exists $x \in P \setminus \Phi(P)$ and $o(x) = 2$. Denote $M = \langle x^2 \rangle \leq P$. Then $M/\Phi(P)/\Phi(P) \leq G/\Phi(P)$, we have that $P = M \Phi(P) = M \leq Z_\infty(G)$ as $P/\Phi(P)$ is a minimal normal subgroup of $G/\Phi(P)$ by Lemma 2.9, a contradiction.

(6) For every $x \in P \setminus \Phi(P)$, $\langle x \rangle$ is weakly S-supplemented in G.
If $\langle x \rangle$ is S-semipermutable in G, then $\langle x \rangle$ is S-permutable in G by Lemma 2.1(4), and so weakly S-supplemented in G.

(7) Final contradiction.
For any $x \in P \setminus \Phi(P)$, we may assume that x is weakly S-supplemented in G by Step (6). Then there is a subgroup T of G and $\langle x \rangle$ such that $G = \langle x \rangle \cap T \leq \langle x \rangle$ and $\langle x \rangle \cap T \leq \langle x \rangle \cap G$. It follows that $P = P \cap G = P \cap \langle x \rangle \cap T = \langle x \rangle \cap (P \cap T)$. Since $P/\Phi(P)$ is abelian, we have $(P \cap T)/\Phi(P)/\Phi(P) \subseteq G/\Phi(P)$. Since $P/\Phi(P)$ is the minimal normal subgroup of $G/\Phi(P)$, $P \cap T \leq \Phi(P)$ or $P = (P \cap T)/\Phi(P) = P \cap T$. If $P \cap T \leq \Phi(P)$, then $\langle x \rangle = P \leq G$, a contraction. If $P = (P \cap T)/\Phi(P) = P \cap T$, then $T = G$ and so $\langle x \rangle = \langle x \rangle \cap G$ is S-permutable in G. We have $\langle x \rangle \cap G$ is a proper subgroup of G and so $\langle x \rangle \cap Q = \langle x \rangle \cap \times Q$, i.e., $\langle x \rangle \cap N_G(Q)$. By Lemma 2.8, $\Phi(P) \subseteq Z(G)$. Therefore we have $P \leq N_G(Q)$ and so $Q \leq G$, a contradiction.

ACKNOWLEDGMENT
The authors would like to thank the Natural Science Foundation of China (No:11071229) and the Natural Science Foundation of the Jiangsu Higher Education Institutions (No:10KJD110004).

REFERENCES