On two control approaches for the output voltage regulation of a boost converter

Abdelaziz Sahbani, Kamel Ben Saad, and Mohamed Benrejeb,

Abstract—This paper deals with the comparison between two proposed control strategies for a DC-DC boost converter. The first control is a classical Sliding Mode Control (SMC) and the second one is a distance based Fuzzy Sliding Mode Control (FSMC). The SMC is an analytical control approach based on the boost mathematical model. However, the FSMC is a non-conventional control approach which does not need the controlled system mathematical model. It needs only the measures of the output voltage to perform the control signal. The obtained simulation results show that the two proposed control methods are robust for the case of load resistance and the input voltage variations. However, the proposed FSMC gives a better step voltage response than the one obtained by the SMC.

Keywords—Boost DC-DC converter, Sliding Mode Control (SMC), Fuzzy Sliding Mode Control (FSMC), Robustness.

I. INTRODUCTION

Sliding Mode Control (SMC) is a non-linear control technique derived from variable structure control system theory and developed by Vladim UTKIN [7]. Such control solution has several advantages such as simple implementation, robustness and good dynamic response. Moreover, such control complies with the non-linear characteristic of the switch mode power supplies [8]. Although, the drawback of SMC is the chattering phenomena. To overcome the chattering problem SMC was extended to a Fuzzy Sliding Mode Control (FSMC).

Traditional SMC in which the use of HM leads to switch frequency variation as well as we have changes in the sliding surface S. In our case, fixed frequency PWM technique is used.

In [9] the authors show that the switching action is a composition of two isolated components: a continuous switching action produces the low frequency and a discontinuous switching action produces the high frequency. The high frequency is often filtered out by the output filter capacitor. For this reason we can consider only the continuous switching action and this is known as the equivalent control [9]-[11].

Fuzzy Logic Control is a non-conventional and robust control law. It is suitable for nonlinear or complex systems characterized by parametric fluctuation or uncertainties. SMC was extended to Fuzzy Sliding Mode Control (FSMC) in order to give more robustness and to overcome the problem of the chattering phenomena. The advantage of the FSMC is that it is not directly related to a mathematical model of the controlled systems as the SMC.

This paper aims to compare between SMC and FSMC of a Boost converter. It is organized as follows. Section 2 presents the studied Boost converter averaged non-linear model. Then, a classical SMC solution is presented in section 3. The proposed FSMC is described in section 4. Finally, the simulation results, obtained by application of the SMC and the FSMC are given and discussed in section 5.

II. BOOST CONVERTER MODELING

The Boost DC-DC converter, called also step-up converter, is a switching converter that produces an output voltage greater than its input voltage. When the switch S_m is closed (on state), the diode D is on inverse polarization, so isolating the output.
from the input stage. The current \(i_L \) through the inductor \(L \) increases. When the switch \(S_w \) is open (off state), the diode is directly polarized and the only path to the inductor current is through the diode \(D \), the capacitor \(C \) and the load \(R \). Therefore, the inductor discharges its energy to the load.

The choice of the following state vector \(x = \begin{bmatrix} i_L \\ v_o \end{bmatrix} \) allows the state-space representation for mode 1 by:

\[
\begin{align*}
\frac{dx_1}{dt} &= A_1 x + B_1 u \\
v_0 &= C_1 x
\end{align*}
\]

\hspace{1em} (3)

Where:

\[
A_1 = \begin{bmatrix} 0 & 0 \\ 0 & -\frac{1}{RC} \end{bmatrix}, \quad B_1 = \begin{bmatrix} \frac{1}{L} \\ 0 \end{bmatrix}, \quad C_1 = [0 \ 1] \quad \text{et} \quad u = v_{in}
\]

and the state-space representation for mode 2 by,

\[
\begin{align*}
\frac{dx_2}{dt} &= A_2 x + B_2 u \\
v_0 &= C_2 x
\end{align*}
\]

\hspace{1em} (4)

Where:

\[
A_2 = \begin{bmatrix} 0 & -\frac{1}{L} \\ \frac{1}{L} & -\frac{1}{RC} \end{bmatrix}, \quad B_2 = \begin{bmatrix} \frac{1}{L} \\ 0 \end{bmatrix}, \quad C_2 = [0 \ 1] \quad \text{et} \quad u = v_{in}.
\]

The state-space averaging method replaces the state-equations by a single state-space description which represents approximately the behaviour of the circuit across the whole period.

So the combination of state-space representation of mode 1 (on mode) and mode 2 (off mode) described respectively equations by (3) and (4) induces the following nonlinear state space representation:

\[
\begin{align*}
\frac{d\hat{x}}{dt} &= [dA_1 + (1-d)A_2] x + [dB_1 + (1-d)B_2] v_{in} \\
v_0 &= [dC_1 + (1-d)C_2] x
\end{align*}
\]

\hspace{1em} (5)

where \(d \) takes 1 for the ON state of the switch and 0 for the OFF state. So the boost converter is modeled as follows:

\[
\begin{align*}
\frac{d\hat{x}}{dt} &= \begin{bmatrix} 0 & -\frac{1}{L} \\ \frac{1}{L} & -\frac{1}{RC} \end{bmatrix} x + \begin{bmatrix} \frac{d}{L} \\ 0 \end{bmatrix} v_{in} \\
v_0 &= \begin{bmatrix} 0 \\ 1 \end{bmatrix} x
\end{align*}
\]

\hspace{1em} (6)

III. PROPOSED SLIDING MODE CONTROLLER

The SMC is a nonlinear control approach which complies with the nonlinear characteristic of the boost converter. Such control technique is robust and it is characterized by a good dynamical response.

Let us consider the following sliding surface \(S \):

\[S = K e + \dot{e} \]

\hspace{1em} (7)

where \(e \) is the output voltage error defined as follows:

\[e = v_o^* - v_o \]

\hspace{1em} (8)

\(K \) is chosen so that it guarantees a good regulation of the output voltage with a near zero steady-state error and minimum of overshoot. The control signal is pulse width modulated. Thus only the equivalent control component has
to be determined and applied to the switch. When the system is on the sliding surface, we have:

\[S = 0 \quad (9) \]

And:

\[\dot{S} = 0 \quad (10) \]

By considering the mathematical model of the DC-DC Boost converter, at the steady state the variation of the surface can be expressed by the following expression:

\[\dot{S} = -Kv_0 - v_0 \quad (11) \]

From equations 6, 10 and 11 we can deduce that:

\[-Kv_0 + \frac{v_0}{RC} = \frac{1 - d}{C} i_L \quad (12) \]

Then, from the state representation we can write:

\[v_0 \left(\frac{1}{RC} - K \right) = 1 - \frac{d}{C} \left(1 - \frac{1}{L} v_0 + v_m \right) \quad (13) \]

Finally, the equivalent control is expressed as follows:

\[d = 1 - \frac{v_m + \sqrt{v_m^2 + \frac{4KK^2(CRK - 1)(v_0 - v_0)}}}{2v_0} \quad (14) \]

The figure 4 presents the structure of the SMC principle of the described SMC.

Fig. 4. The considered SMC

IV. PROPOSED FUZZY SLIDING MODE CONTROLLER

Fuzzy logic control is a nonlinear and robust control approach. It is suitable for nonlinear or complex systems characterized by parametric uncertainties and fluctuations. The extension of the SMC into a FSMC aims to improve the robustness of the controlled systems and the elimination of the chattering phenomena. In the following we propose to apply and to adapt the method proposed by R. PALM in [12] to the studied Boost converter.

The sliding surface defined by the equation 3 can be expressed as follows:

\[S = EY^T \quad (15) \]

Where \(E = [\phi \ \dot{\phi}] \) and \(Y = [K \ 1] \). The distance between the trajectory error and the sliding surface \(d_m \) is defined as follows [13]-[15]:

\[d_m = \frac{\dot{e}_p + Ke_p}{\sqrt{1 + K^2}} \quad (16) \]

\(d_m \) is the normal distance between the point \(P(e_p, \dot{e}_p) \) and the sliding surface (switching line). Such distance is illustrated graphically in figure 5 for an arbitrary point \(P(e_p, \dot{e}_p) \).

Fig. 5. Distances \(d_m \) and \(d \)

Let \(H(e_p, \dot{e}_p) \) be the intersection point of the switching line and its perpendicular passing through the point \(P(e_p, \dot{e}_p) \). \(d_b \) is defined as the distance between the point \(H(e_p, \dot{e}_p) \) and the origin point O. The distance \(d_b \) is expressed as follows:

\[d_b = \sqrt{\|E\|^2 - d_m^2} \quad (17) \]

The proposed fuzzy sliding mode controller has as inputs the two distances \(d_m \) and \(d_b \). The output signal is the control increment \(\Delta u(K) \) which is used to update the control signal defined as follows:

\[d(K) = \Delta u(K) + d(K - 1) \quad (18) \]

Trapezoidal and triangular membership functions, denoted by N (Negative), Z (Zero) and P (Positive), were used for \(d_m \). The same shape of membership functions denoted by Z (Zero), PS (Positive small) and PB (Positive Big) are used for \(d_b \).

\(d_m \) and \(d_b \) membership functions are presented respectively in figures 6 and 7 in the normalized domain \([-1 \ 1]\) for \(d_m \) and \([0 \ 1]\) for \(d_b \).
For the output signal of the proposed FSMC, five triangular membership functions, denoted by NB (Negative Big), NM (Negative Middle), Z (Zero), PM (Positive Middle), PB (Positive Big) are used for the output signal Δd (8). The rule base is given by the Table I.

Table I
Rule base of the proposed FSMC

<table>
<thead>
<tr>
<th>d_{en}</th>
<th>Z</th>
<th>PS</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_{o}</td>
<td>Z</td>
<td>PS</td>
<td>PB</td>
</tr>
<tr>
<td></td>
<td>PS</td>
<td>PB</td>
<td>NB</td>
</tr>
<tr>
<td></td>
<td>PB</td>
<td>NS</td>
<td>NB</td>
</tr>
</tbody>
</table>

The proposed control diagram is presented in figure 9 where K_1 and K_2 are the input scaling factor and K_3 is the output one.

V. SIMULATION RESULTS

The proposed FSMC and SMC were tested by simulation. The electrical parameters of the studied Boost converter are given in Table II.

Table II
Studied Boost converter parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_{in}</td>
<td>20V</td>
</tr>
<tr>
<td>C</td>
<td>22×10^{-6} F</td>
</tr>
<tr>
<td>L</td>
<td>3.1×10^{-3} H</td>
</tr>
<tr>
<td>R</td>
<td>15Ω</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>100×10^3 Hz</td>
</tr>
</tbody>
</table>

The classical SMC, described above, was compared to the proposed FSMC. Figures 10 and 11 give the simulated step responses of the studied boost converter for 40V reference voltage. From the obtained results the two figures we can conclude that the dynamical behavior of the transient state voltage response obtained by the FSMC is better than the one obtained by SMC. Indeed, the overshoot obtained by the FMC is 10%. It is reduced to 2% by application of the FSMC.
In order to test the robustness of the two control methods, simulations are given for the case of the load and the input voltage variations. Figures 12 and 13 present the variation of the output voltage under changes in load resistance from 15Ω to 12.5Ω at 0.01s. We can notice that the two controllers reject such perturbation.

From figures 14 to 16 we test the Boost DC-DC converter when the input voltage varies. Figure 14 illustrates the variation of the input voltage from 20V to 18V. We can notice in figure 15 and in figure 16 that the two controllers reject also the input voltage variation.

VI. CONCLUSION

In this paper, we propose two controllers to regulate the output voltage of a DC-DC Boost converter based on SMC and FSMC. The determination of the control signal of the SMC is based on an analytical approach exploiting the dynamical model of the studied converter. However, the FSMC does not need any model. As the SMC, the FSMC
complies with the nonlinear characteristic of the studied
converter. Although, it offers better performances in terms
of overshoot limitation of the voltage step response than the
SMC. The robustness test results for the cases of the load
and input voltage variations prove that the SMC and FSMC
give similar and good results.

NOMENCLATURE

- \(v_{\text{in}} \): input voltage
- \(v_{\text{ref}} \): reference voltage
- \(C \): capacitance
- \(L \): inductance
- \(R \): load resistance
- \(v_{\text{out}} \): output voltage
- \(i_L \): current inductance
- \(d \): equivalent control signal

REFERENCES

Abdelaziz Sahbani was born in 1977 in Bizerte, Tunisia. He graduated in 2000 from "Ecole Supérieure de science et Technique de Tunis". He received the master’s degree in Electrical Engineering in 2004 from "Ecole Supérieure des sciences et Techniques de Tunis". He is currently Technology of "ISET de Bizerte" and he is preparing the PhD degree in Electrical Engineering in "Ecole Nationale d’Ingenieurs de Tunis". His research interests control systems based on classical and advanced approaches.

Kamel Ben Saad was born in 1976 in Tunis, Tunisia. He graduated in 2000 from Ecole Nationale d’Ingenieurs (ENIT). He received the master degree also from ENIT in 2001. He received the PhD degree in Electrical Engineering in 2005 from Ecole Centrale de Lille and Ecole Nationale d’Ingenieurs de Tunis. He is currently Matre-Assistant (Assistant Professor) at the ENIT. His research interests are in the area of machines, classical and intelligent, control.

Mohamed Benrejeb was born in Tunis in 1950. He obtained the Diploma of "Ingenieur IDN" in 1973, The Master degree of Automatic Control in 1974, the PhD in Automatic Control of the University of Lille in 1976 and the DSc of the same University in 1980. Full Professor at "Ecole Nationale d’Ingenieurs de Tunis" since 1985 and at "Ecole Centrale de Lille" since 2003, his research interests are in the area of analysis and synthesis of complex systems based on classical and non conventional approaches.