Group of Square Roots of Unity Modulo n
Rochdi Omami, Mohamed Omami and Raouf Ouni

Abstract—Let $n \geq 3$ be an integer and $G_2(n)$ be the subgroup of square roots of 1 in $(\mathbb{Z}/n\mathbb{Z})^*$. In this paper, we give an algorithm that computes a generating set of this subgroup.

Keywords—Group, modulo, square roots, unity.

I. INTRODUCTION

Let $n \geq 3$ be an integer, recall that $(\mathbb{Z}/n\mathbb{Z})^*$ denotes the group of units of the ring $(\mathbb{Z}/n\mathbb{Z})$. Let $n = p_1^{\alpha_1}p_2^{\alpha_2} \cdots p_m^{\alpha_m}$ the primary decomposition of n, then

$$(\mathbb{Z}/n\mathbb{Z})^* = \prod_{i=1}^{m} (\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z})^*$$

for more details on the structure of $(\mathbb{Z}/n\mathbb{Z})^*$ see [1] and [2]. The group $(\mathbb{Z}/n\mathbb{Z})^*$ has several applications, the most important is cryptography, that is RSA cryptosystem (see [5]). The security of the RSA cryptosystem is based on the problem of factoring large numbers and the task of finding ϕth roots modulo a composite number n whose factors are not known.

In [8], D.Shanks gives a probabilistic algorithm that computes a square root of an integer modulo an odd prime p. There are other algorithms that compute a square root of an integer modulo an integer n (see [7]) and more generally in a finite fields (see [6]).

We denote by $G_2(n)$ the subgroup of $(\mathbb{Z}/n\mathbb{Z})^*$ which is formed by the integers x that satisfies $x^2 = 1$, such integers are called square roots of unity modulo n. More precisely $G_2(n)$ contains the unity and elements of order 2. Recall that elements of order 2 exists always in $(\mathbb{Z}/n\mathbb{Z})^*$ (-1 has for order 2), therefore $G_2(n)$ is not a trivial group. Finally recall that all elements of $G_2(n)$ except the unity has for order 2, so $G_2(n)$ has an order a power of 2, so we obtain the following result:

Proposition

Let $n \geq 3$ be an integer, then there exists an integer $t \geq 1$ such that :

$$\text{Ord}(G_2(n)) = 2^t.$$

In this article, we will give an algorithm that computes a generating set of $G_2(n)$ and gives its decomposition into product of cyclic subgroups. Finally this algorithm will be written in MAPLE language.

II. SQUARE ROOTS OF UNITY MODULO n

Let $n \geq 3$ be an integer and $n = p_1^{\alpha_1}p_2^{\alpha_2} \cdots p_m^{\alpha_m}$ its primary decomposition. In this study, we shall distinguish the cases $\alpha = 0$, $\alpha = 1$, $\alpha = 2$ and $\alpha \geq 3$.

Case 1 : $\alpha = 0$

Let $n \geq 3$ be an integer and $n = p_1^{\alpha_1}p_2^{\alpha_2} \cdots p_m^{\alpha_m}$ its primary decomposition. Let x be an element of $(\mathbb{Z}/n\mathbb{Z})^*$ such that $x^2 = 1$, that is n divides $x^2 - 1 = (x - 1)(x + 1)$. We have $(x + 1) - (x - 1) = 2$, therefore $\text{GCD}(x - 1, x + 1) \in \{1, 2\}$, so if p_i divides $x - 1$ then $p_i^{\alpha_i}$ divides $x - 1$. If we note, for example, p_1, p_2, \ldots, p_s the primes among the p_i which divide $x - 1$, then x is a solution of this system :

$$\begin{align*}
x\ -\ 1 & = \ p_1^{\alpha_1}p_2^{\alpha_2} \cdots p_s^{\alpha_s}K \\
x\ +\ 1 & = \ p_{s+1}^{\alpha_{s+1}}p_{s+2}^{\alpha_{s+2}} \cdots p_m^{\alpha_m}K' \\
\end{align*}$$

It’s clear that x is the unique solution of this system modulo n. Conversely, any system of the previous form gives a square root of unity modulo n.

Note that a two different systems of this form give two different solutions, indeed let the systems :

$$\begin{align*}
x\ -\ 1 & = \ p_1^{\alpha_1(1)}p_2^{\alpha_2(1)} \cdots p_s^{\alpha_s(1)}K_1 \\
x\ +\ 1 & = \ p_1^{\alpha_1(2)}p_2^{\alpha_2(2)} \cdots p_s^{\alpha_s(2)}K_2 \\
\end{align*}$$

and

$$\begin{align*}
x\ -\ 1 & = \ p_{s+1}^{\alpha_{s+1}(1)}p_{s+2}^{\alpha_{s+2}(1)} \cdots p_m^{\alpha_m(1)}K_1' \\
x\ +\ 1 & = \ p_{s+1}^{\alpha_{s+1}(2)}p_{s+2}^{\alpha_{s+2}(2)} \cdots p_m^{\alpha_m(2)}K_2' \\
\end{align*}$$

where σ and ρ are two permutations of the set $\{1, 2, \ldots, m\}$, if $x = y$, then the set of prime divisors of $x - 1$ among the p_i is the same of $y - 1$. Therefore the set of prime divisors of $x - 1$ among the p_i is $\{p_1^{\rho(1)}, p_2^{\rho(2)}, \ldots, p_m^{\rho(m)}\}$ because $p_{\sigma(s+1)}, p_{\sigma(s+2)}$, and $p_{\sigma(m)}$ does not divide K_1, indeed :

$$(\mathbb{Z}/n\mathbb{Z})^*/p_{\sigma(s+1)} \cdots p_{\sigma(m)} = p_{\sigma(s+1)} \cdots p_{\sigma(m)} / p_{\sigma(s+1)},$$

Thus $\text{GCD}(K_1, p_{\sigma(s+1)} \cdots p_{\sigma(m)}) \in \{1, 2\}$, so

$$\{p_1^{\rho(1)}, p_2^{\rho(2)}, \ldots, p_m^{\rho(m)}\} = \{p_1^{\rho(1)}, p_2^{\rho(2)}, \ldots, p_m^{\rho(m)}\} = \{p_1^{\rho(1)}, p_2^{\rho(2)}, \ldots, p_m^{\rho(m)}\}.$$

We conclude that the number of square roots of unity modulo n is equal to the number of partitions of the set $\{1, 2, \ldots, m\}$, that is 2^m. Note that the empty subset corresponds to -1 and if all p_i divide $x - 1$, then $x = 1$. So we have proved :

Proposition 2.1: Let $n \geq 3$ be an integer, then

$$\text{Ord}(G_2(n)) = 2^{\omega(n)}$$

where $\omega(n)$ denote the number of distinct prime factors of n.

Now we study the structure of the group $G_2(n)$. For simplicity throughout this section, we take $n \geq 3$ to be an odd integer.
and \(n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m} \) its primary decomposition. We start with this definition:

Definition 2.1: Let \(x \) be a square root of unity modulo \(n \). \(x \) is said to be initial if all prime factors of \(n \) divide \(x - 1 \) except only one \(p_i \), we said that \(x \) is associated with \(p_i \). And we note:

\[
x - 1 = p_1^{\alpha_1} p_2^{\alpha_2} \cdots \sqrt{p_i^{\alpha_i}} \cdots p_m^{\alpha_m} K
\]

where \(K \) is an integer not divisible by \(p_i \) and the symbol \(\sqrt{p_i^{\alpha_i}} \) means that we remove the factor \(p_i^{\alpha_i} \).

Note that for any \(i \in \{ 1, 2, ..., m \} \) there exist only one square root of unity associated with \(p_i \) which is the solution of this system:

\[
\begin{align*}
x - 1 &= p_1^{\alpha_1} p_2^{\alpha_2} \cdots \sqrt{p_i^{\alpha_i}} \cdots p_m^{\alpha_m} K \\
x + 1 &= p_i^{\alpha_i} K'
\end{align*}
\]

We denote by \(G_p(n) \) the set that contains this solution and the unity, so \(G_p(n) \) is a cyclic subgroup of \(G_2(n) \) of order 2. We have the following theorem:

Theorem 2.1: The map

\[
\varphi : G_p^2(n) \times G_p^2(n) \cdots \times G_p^2(n) \longrightarrow G_2(n)
\]

\[
(x_1, x_2, \ldots, x_m) \longmapsto x_1.x_2.\ldots.x_m
\]

is an isomorphism of groups.

Proof:

It’s clear that \(\varphi \) is a morphism of groups, we will show first that \(\varphi \) is injective. We have \(\varphi(x_1, x_2, \ldots, x_m) = 1 \Longleftrightarrow x_1.x_2.\ldots.x_m = 1 \). Suppose that there exists an integer \(i \) such that \(x_i \neq 1 \), therefore \(p_i \) does not divides \(x_i - 1 \). Also, for \(j \neq i, p_i \) divides \(x_j - 1 \). Then we have:

\[
x_i = 1 + K_i \quad \text{and} \quad x_j = 1 + p_i.K_j
\]

where \(p_i \) does not divides \(K_i \), so

\[
x_1.x_2.\ldots.x_m = (1 + p_i.K_i)(1 + K_i) \cdots (1 + p_i.K_m) \\
= (1 + p_i.K_i')(1 + K_i) \\
= 1 + (p_i.K' + p_i.K'K_i + K_i).
\]

Since \(p_i \) does not divides \(K_i \), then \(p_i \) does not divides \(x_1.x_2.\ldots.x_m - 1 \), that is absurd. Thus \(x_i = 1 \) for all \(i \in \{ 1, 2, ..., m \} \). Hence \(\varphi \) is injective. Finally, we remark that:

\[
\text{Ord}(G_p^2(n) \times G_p^2(n) \cdots \times G_p^2(n)) = \text{Ord}(G_2(n)) = 2^m
\]

so \(\varphi \) is bijective, therefore it’s an isomorphism.

Remark:

The fact that \(\varphi \) is injective is due to the choice of \(x_i \), i.e. the initial square roots of the unity. The previous theorem shows that \(G_2(n) \) is exactly formed by the unity and finished products without the repetition of the initial square roots of the unity. In other words, if \(x_i \) denote the initial square root of the unity associated with \(p_i \), then:

\[
G_2(n) = \prod_{i \in I} x_i \quad \text{avec} \ I \subset \{ 1, 2, ..., m \}.
\]

With the convention that the unity is the product over empty set.

Remark also that -1 is the product of all \(x_i \). Indeed:

\[
\prod_{i=1}^{m} x_i = \prod_{i=1}^{m} (1 + p_1^{\alpha_1} p_2^{\alpha_2} \cdots \sqrt{p_i^{\alpha_i}} \cdots p_m^{\alpha_m} K_i) \\
= 1 + \sum_{i=1}^{m} p_1^{\alpha_1} p_2^{\alpha_2} \cdots \sqrt{p_i^{\alpha_i}} \cdots p_m^{\alpha_m} K_i + Kn
\]

since \(\sum_{i=1}^{m} p_1^{\alpha_1} p_2^{\alpha_2} \cdots \sqrt{p_i^{\alpha_i}} \cdots p_m^{\alpha_m} K_i \) is not divisible by all \(p_i \) because \(K_i \) is not divisible by \(p_i \), we conclude that \(\prod_{i=1}^{m} x_i - 1 \) is not divisible by all \(p_i \). It follows \(\prod_{i=1}^{m} x_i = -1 \). Finally, we have the following result:

Corollary 2.1: Let \(x_i \) be the initial square root of the unity associated with \(p_i \), then:

\[
G_2(n) = \langle x_1, x_2, \ldots, x_m \rangle.
\]

Now, we give an algorithm written in MAPLE that computes the \(x_i \), i.e. a generating set of \(G_2(n) \).

Let us give some explanations. Resuming the system:

\[
\begin{align*}
x - 1 &= p_1^{\alpha_1} p_2^{\alpha_2} \cdots \sqrt{p_i^{\alpha_i}} \cdots p_m^{\alpha_m} K \\
x + 1 &= p_i^{\alpha_i} K'
\end{align*}
\]

This system gives the following equation:

\[
p_i^{\alpha_i} K' - p_1^{\alpha_1} p_2^{\alpha_2} \cdots \sqrt{p_i^{\alpha_i}} \cdots p_m^{\alpha_m} K = 2
\]

and Bezout algorithm allows us to compute \(K \) and \(K' \) and all \(x_i \).

\[
\begin{align*}
\text{Gene}2 &:= \text{proc}(n) \quad \text{local} \ LB, i, \text{LFact}, \text{GEN}; \\
\text{GEN} &:= \mathbb{[]} ; \ LB := \mathbb{[]} ; \\
\text{LFact} &:= \text{ifactors}(n)[2] ; \\
\text{for} i \text{ from 1 to numargs(LFact)} \text{do} \\
\text{LB} &:= \text{Bezout}(\text{LFact}[i][1] \cdot \text{LFact}[i][2], \\
n/(\text{LFact}[i][1] \cdot \text{LFact}[i][2]), 2) ; \\
\text{GEN} &:= \text{op}(\text{GEN}), \ LB[1] * \\
\text{LFact}[i][1] \cdot \text{LFact}[i][2] - \mathbb{1} \text{ mod } n ; \\
\text{end} ; \\
\text{eval}(\text{GEN}) ; \\
\text{end} ;
\end{align*}
\]

Algorithm 1.1
An application example:

To find the generators of the group of square root of the unity modulo 11 \times 13 \times 17 \times 19, we can use the previous algorithm with the command

```
Gen\_2(11 \times 13 \times 17 \times 19);
```

We have the following result [33593, 21319, 32605, 4863], that is the list of generators.

Remark:
The Bezout function which is used in the previous algorithm is not a MAPLE function, but it’s a classical algorithm called **Extended Euclidean algorithm.**

Case 2 : \(\alpha = 1 \)

Let \(n \geq 3 \) be an integer such that its primary decomposition is \(n = 2p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_m^{\alpha_m} \). Let \(x \) be an element of \((\mathbb{Z}/n\mathbb{Z})^*\) such that \(x^2 = 1 \), that is \(n \) divides \(x^2 - 1 = (x - 1)(x + 1) \). We have \((x + 1) - (x - 1) = 2\), therefore \(GCD(x - 1, x + 1) \in \{1, 2\}\). So, if \(p_i \) divides \(x - 1 \), then \(p_i^{\alpha_i} \) divides \(x - 1 \). Also, 2 divides \((x - 1)(x + 1)\), thus 2 divides \((x - 1)\) or \((x + 1)\). Since \((x + 1) - (x - 1) = 2\), then 2 divides \((x - 1)\) and \((x + 1)\), so \(x \) is a solution of a system of this form:

\[
\begin{cases}
 x - 1 = 2p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_i^{\alpha_i} \ldots p_m^{\alpha_m} K_1 \\
 x + 1 = p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_i^{\alpha_i} \ldots p_m^{\alpha_m} K_2
\end{cases}
\]

where \(\sigma \) is a permutation of the set \(\{1, 2, \ldots, m\} \). It’s clear that \(x \) is the only solution modulo \(n \) of this system and every system of this form gives a square root of the unity modulo \(n \). We show in the same way as the previous case, that two different systems gives two distinct solutions. Therefore, the number of square roots of the unity modulo \(n \) is the number of partitions of the set \(\{1, 2, \ldots, m\} \), that is \(2^m \). Hence, we have the following result:

Proposition 2.2: Let \(n \geq 3 \) be an odd integer, then

\[
\text{Ord}(\mathbb{G}_2(2n)) = 2^{\omega(n)}
\]

where \(\omega(n) \) denote the number of distinct prime factors of \(n \).

For simplicity throughout this section we take \(n \geq 3 \) to be an integer and \(n = 2p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_m^{\alpha_m} \) its primary decomposition. We start the study of \(\mathbb{G}_2(n) \) with this definition:

Definition 2.2: Let \(x \) be a square root of unity modulo \(n \), \(x \) is said to be initial if all the prime factors of \(n \) divide \(x - 1 \) except only one \(p_i \), we said that \(x \) is associated with \(p_i \). And we note:

\[
x - 1 = 2p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_i^{\alpha_i} \ldots p_m^{\alpha_m} K
\]

where \(K \) is an integer that does not divisible by \(p_i \) and the symbol \(p_i^{\alpha_i} \) means that we remove the factor \(p_i^{\alpha_i} \).

We remark that for each \(i \in \{1, 2, \ldots, m\} \), there exists only one square root of unity associated with \(p_i \) which is the solution of the following system:

\[
\begin{align*}
 x - 1 &= 2p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_i^{\alpha_i} \ldots p_m^{\alpha_m} K \\
 x + 1 &= p_i^{\alpha_i} K'
\end{align*}
\]

We denote by \(\mathbb{G}_2(n) \) the set that contains this solution and the unity, so \(\mathbb{G}_2(n) \) is a cyclic subgroup of \(\mathbb{G}_2(n) \) of order 2. We have the following theorem:

Theorem 2.2: The map

\[
\varphi : \mathbb{G}_2(n) \times \mathbb{G}_2(n) \times \mathbb{G}_2(n) \rightarrow \mathbb{G}_2(n)
\]

\[
(x_1, x_2, \ldots, x_m) \mapsto x_1 x_2 \ldots x_m
\]

is an isomorphism of groups.

Remark:
the previous theorem shows that

\[
\mathbb{G}_2(n) = \prod_{i \in I} x_i , \text{avec } I \subset \{1, 2, \ldots, m\}
\]

and we have also \(\prod_{i=1}^{n} x_i = -1 \).

Corollary 2.2: Let \(x_i \) be the initial square root of the unity associated with \(p_i \), then

\[
\mathbb{G}_2(n) = \langle x_1, x_2, \ldots, x_m \rangle .
\]

We finish this section with the fact that the algorithm 1.1 remains valid with integers of the form \(n = 2p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_m^{\alpha_m} \), just replacing \(\text{LFact} := \text{ifactors}(n)/2 \); by \(\text{LFact} := \text{ifactors}(n/2)[2] \);, it follows the algorithm 1.2.

Case 3 : \(\alpha = 2 \)

Let \(n \geq 3 \) be an integer such that its primary decomposition is \(n = 4p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_m^{\alpha_m} \). If all \(\alpha_i \) are nuls, then \(n = 4 \). We know that \((\mathbb{Z}/4\mathbb{Z})^* = \{1, -1\} = \langle -1 \rangle \), therefore, we suppose that at least one of the \(\alpha_i \) is not null.

Let \(x \) be an element of \((\mathbb{Z}/n\mathbb{Z})^*\) such that \(x^2 = 1 \), that is \(n \) divides \(x^2 - 1 = (x - 1)(x + 1) \). We have \((x + 1) - (x - 1) = 2\), therefore 2 divides \((x - 1)\) and \((x + 1)\). But 2 is not an ordinary prime, indeed we have the following equivalence:

\[
x \equiv 1[2] \iff x^2 \equiv 1[8].
\]

It follows that 8 divide \(x^2 - 1 = (x - 1)(x + 1) \). Since \(GCD(x - 1, x + 1) = 2 \), therefore 4 divides \((x - 1)\) or \((x + 1)\), so \(x \) is a solution of one of the following systems:

\[
\begin{align*}
 x - 1 &= 4p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_i^{\alpha_i} \ldots p_m^{\alpha_m} K_1 \\
 x + 1 &= 4p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_i^{\alpha_i} \ldots p_m^{\alpha_m} K_2 \\
 x - 1 &= p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_i^{\alpha_i} \ldots p_m^{\alpha_m} K_1 \\
 x + 1 &= p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_i^{\alpha_i} \ldots p_m^{\alpha_m} K_2
\end{align*}
\]
where σ is a permutation of the set \[\{1, 2, \ldots, m\} \] . It’s clear that each one of these systems has a unique solution modulo \(n \) and each system of this form gives a square root of the unity modulo \(n \). We show also that a two different systems gives two distinct solutions. Therefore, the number of square roots of the unity modulo \(n \) twice the number of partitions of the set \[\{1, 2, \ldots, m\} \] that is \(2^m \). Hence, we have the following result:

Proposition 2.3: Let \(n \geq 3 \) be an odd integer, then

\[
\text{Ord}(G_2(4n)) = 2^{\omega(n)+1}
\]

where \(\omega(n) \) denote the number of distinct prime factors of \(n \).

For simplicity throughout this section we take \(n \geq 3 \) to be an integer and \(n = 4p_1^{\alpha_1}p_2^{\alpha_2} \cdots p_m^{\alpha_m} \) its primary decomposition with at least one of the \(\alpha_i \) as being not null. Now we start studying of \(G_2(n) \). Consider the following systems :

\[
\begin{align*}
-1 &= 4p_1^{\alpha_1}p_2^{\alpha_2} \cdots p_m^{\alpha_m}K_1 \\
1 &= K_2 \\
-x &= 1 = p_1^{\alpha_1}p_2^{\alpha_2} \cdots p_m^{\alpha_m}K_1' \\
1 &= 4K_2'
\end{align*}
\]

It’s clear that 1 is the only solution of the first system. The second system has only solution which is \(x_0 = n/2 + 1 \). This solution is called second trivial square root of the unity, we denote by \(G_2^0(n) \) the cyclic subgroup which is formed by 1 and \(x_0 \).

Proposition 2.4: Let the systems :

\[
\begin{align*}
-x &= 1 = 4p_1^{\sigma_1^{(1)}}p_2^{\sigma_1^{(2)}} \cdots p_m^{\sigma_1^{(m)}}K_1 \\
1 &= K_2 \\
-x &= 1 = p_1^{\sigma_1^{(1)}}p_2^{\sigma_1^{(2)}} \cdots p_m^{\sigma_1^{(m)}}K_1' \\
1 &= 4K_2'
\end{align*}
\]

if we note by \(x \) the solution of the first system and \(y \) that of the second, then \(y = x_0y \) (and also \(x = xy_0 \)).

Proof:

It’s clear that \(x_0 \) is a square root of the unity. We have :

\[
x_0 = (1 + p_1^{\alpha_1}p_2^{\alpha_2} \cdots p_m^{\alpha_m}K_1') \\
(1 + 4p_1^{\sigma_1^{(1)}}p_2^{\sigma_1^{(2)}} \cdots p_m^{\sigma_1^{(m)}})K_1 \\
1 = 1 = p_1^{\sigma_1^{(1)}}p_2^{\sigma_1^{(2)}} \cdots p_m^{\sigma_1^{(m)}}(4K_1 + \sum_{\sigma_1^{(1)}+1}^{\sigma_1^{(2)}} \cdots \sum_{\sigma_1^{(1)}+1}^{\sigma_1^{(2)}} \sigma_{\sigma_1^{(2)}}(m)K_1') + Kn
\]

Since \(K_1' \) is not divisible by 4 and \(K_1 \) is not divisible by \(p_{\sigma_1^{(1)}}^{(1)} \sigma_{\sigma_1^{(2)}} \sigma_{\sigma_1^{(m)}}(m) \) and \(p_4(x_0) \), therefore \(x_0 - 1 \) is not divisible by 4, \(p_4(x_0) \) \(p_{\sigma_1^{(1)}}^{(1)} \sigma_{\sigma_1^{(2)}} + 1 \) and \(p_{\sigma_1^{(m)}}(m) \). So \(x_0 \) is solution of the second system, i.e. \(x_0 = y \).

Definition 2.3: Let \(x \) be a square root of the unity modulo \(n \). We said that \(x \) is of the first category if 4 divides \(x - 1 \), else we said that \(x \) is of the second category.

Remark :

From the definition, we see that a square root of the unity of the first category is a solution of a system of the form :

\[
\begin{align*}
-x &= 1 = 4p_1^{\sigma_1^{(1)}}p_2^{\sigma_1^{(2)}} \cdots p_m^{\sigma_1^{(m)}}K_1 \\
1 &= K_2 + 1 = p_1^{\sigma_1^{(1)}}p_2^{\sigma_1^{(2)}} \cdots p_m^{\sigma_1^{(m)}}K_2
\end{align*}
\]

also a square root of the unity of the second category is the product of a square root of the unity of the first category by \(x_0 \).

Definition 2.4: Let \(x \) be a square root of unity modulo \(n \). \(x \) is said to be initial if all prime factors of \(n \) divide \(x - 1 \) except only one \(p_i \), we said that \(x \) is associated with \(p_i \). And we note :

\[
-x = 1 = p_1^{p_1}p_2^{p_2} \cdots p_i^{p_i} \cdots p_m^{p_m}K
\]

where \(K \) is an integer not divisible by \(p_i \).

Note that there exist two initial square roots of the unity associated with \(p_i \), which are the solutions of the following systems :

\[
\begin{align*}
-x &= 1 = 4p_1^{\sigma_1^{(1)}}p_2^{\sigma_1^{(2)}} \cdots p_i^{\sigma_i^{(i)}} \cdots p_m^{\sigma_1^{(m)}}K \\
1 &= K' + 1 = p_1^{\sigma_1^{(1)}}p_2^{\sigma_1^{(2)}} \cdots p_i^{\sigma_i^{(i)}} \cdots p_m^{\sigma_1^{(m)}}K'
\end{align*}
\]

We remark that the solution of the first system is of the first category and that of second is of the second category. If we note by \(x_i \) the solution of the first system and \(y_i \) that of second, then \(y_i = x_i \) \(x_0 \). So the set \(\{x_0, x_1, x_2, y_1, y_2\} \) is a subgroup of \(G_2(n) \), which we denote by \(G_2^0(n) \).

The set formed by 1 and \(x_1 \) (the initial square root of the unity of the first category associated with \(p_i \)) is a cyclic subgroup of order 2, which we denote by \(G_2^{p_i}(n) \) and we have the following isomorphism :

\[
G_2^{p_1}(n) \simeq G_2^0(n) \times G_2^0(n).
\]

More generally, we have the following result :

Theorem 2.3: The map

\[
\varphi : G_2^{p_1}(n) \times \cdots \times G_2^{p_m}(n) \times G_2^0(n) \rightarrow G_2(n)
\]

\[
(x_1, \ldots, x_m, y) \rightarrow x_1, x_2, \ldots, x_m, y
\]

is an isomorphism of groups.

Proof:

It’s clear that \(\varphi \) is an morphism of groups. For showing that \(\varphi \) is an isomorphism, we should prove that \(\varphi \) is injective and
we conclude by cardinality.

If we suppose that there exists an integer \(i \) such that \(x_i \neq 1 \), then \(p_i \) does not divides \(x_i - 1 \). Since if \(j \neq i \) then \(p_i \) divides \(x_j - 1 \) and \(p_i \) divides \(y \). Therefore \(x_1 x_2 \ldots x_m y - 1 \) is not divisible by \(p_i \), that is absurd. Thus \(x_i = 1 \) for all \(i \). Finally we have \(y = 1 \), therefore \(\varphi \) is injective.

Remark:
From the previous theorem, we can see that:

\[
G_2(n) = \left\{ \prod_{i \in I} x_i \mid \text{avec } I \subset \{1, 2, \ldots, m\} \right\} \times \{1, x_0\}
\]

and we can also show that \(x_0 \prod_{i=1}^m x_i = -1 \).

Corollary 2.3: With the previous notations, we have:

\[
G_2(n) = \langle x_0, x_1, x_2, \ldots, x_m \rangle.
\]

Now we give an algorithm in MAPLE that computes the \(x_i \), i.e. a generating set of \(G_2(n) \). \(x_0 \) is computed from the relation \(x_0 = n/2 + 1 \). The other \(x_i \) are computed in the same way as the previous case.

```
Gene_2 := proc(n) local LB, i, LFact, GEN;
GEN := \{ \}; LB := \{ \};
GEN := \{ op(\{GEN\}), n/2 + 1 \};
LFact := \{ \} ;
for i from 1 to nops(LFact) do
LB := Bezout(LFact[i][1] \times LFact[i][2],
\[\text{\( \text{lcm} = \prod_{i} x_i \times \text{gcd} = 1 \mod n \)}\]
end:
end;
Gen(GEN);
end;
```

Algorithm 1.3

An application example:

To find the generators of the group of square root of the unity modulo \(4 \times 11 \times 13 \times 17 \), we can use the previous algorithm with the command

\[
\text{Gene}_2(4 \times 11 \times 13 \times 17);
\]

We have the following result \[4863, 4421, 6733, 3433\], that is the list of generators. We note that the first value of the given list is the second trivial square root of the unity.

Case 4 : \(\alpha \geq 3 \)

Let \(n \geq 3 \) be an integer such that its primary decomposition is \(n = p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_m^{\alpha_m} \) with \(\alpha \geq 3 \).

If all \(\alpha_i \) are null, then \(n = 2^\alpha \geq 3 \), Recall that \((\mathbb{Z}/n\mathbb{Z})^*\) is not cyclic and its cardinal is \(n/2 \). Let \(x \) be an element of \((\mathbb{Z}/n\mathbb{Z})^*\) such that \(x^2 = 1 \), that is \(2^{\alpha} \) divides \(x^2 - 1 = (x - 1)(x + 1) \). We have \(\text{GCD}(x - 1, x + 1) = 2 \), therefore \(2^{\alpha-1} \) divides \((x - 1) \) or \((x + 1) \). So \(x \) is the solution of one of the following systems:

\[
\begin{align*}
x - 1 &= 2^{\alpha-1} K_1 \\
x + 1 &= 2^{\alpha-1} K_2
\end{align*}
\]

The first system has two solutions which are 1 and \(2^{\alpha-1} + 1 \), the second system has two solutions which are \(-1 \) and \(2^{\alpha-1} - 1 \). It’s clear that all of the previous solutions are square roots of the unity. We have the following result:

Proposition 2.5: Let \(n = 2^\alpha \) with \(\alpha \geq 3 \), then

\[
G_2(n) = \{ 1, n/2 - 1, n/2 + 1, -1 \}
\]

Remark:
We remark that \((n/2 - 1)(n/2 + 1) = (2^{\alpha-1} - 1)(2^{\alpha-1} + 1) = -1 \), therefore

\[
G_2(n) = \langle n/2 - 1, n/2 + 1 \rangle.
\]

Now we suppose that \(n = 2^\alpha p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_m^{\alpha_m} \) with \(\alpha \geq 3 \) and at least one of the \(\alpha_i \) is not null. Let \(x \) be an element of \((\mathbb{Z}/n\mathbb{Z})^*\) such that \(x^2 = 1 \). Since \(\text{GCD}(x - 1, x + 1) = 2 \), then \(x \) is the solution of one of the following systems:

\[
\begin{align*}
x - 1 &= 2^{\alpha-1} \sigma^{\alpha(s+1)} (s+2) \ldots p_\alpha^{\alpha(s)} K_1 \\
x + 1 &= 2^{\alpha-1} \sigma^{\alpha(s+1)} (s+2) \ldots p_\alpha^{\alpha(s)} K_2 \\
x - 1 &= 2^{\alpha-1} \sigma^{\alpha(s+1)} (s+2) \ldots p_\alpha^{\alpha(s)} K_1' \\
x + 1 &= 2^{\alpha-1} \sigma^{\alpha(s+1)} (s+2) \ldots p_\alpha^{\alpha(s)} K_2'
\end{align*}
\]

where \(\sigma \) is a permutation of the set \(\{1, 2, \ldots, m\} \). It’s clear that each of these systems has two solutions modulo \(n \) and each system of this form gives a square root of the unity modulo \(n \), because \(x \) is odd. We shows also that a two different systems give distinct solutions. Therefore, the number of square roots of the unity modulo \(n \) is four times the number of partitions of the set \(\{1, 2, \ldots, m\} \), that is \(2^{m+2} \). Hence, we have the following result:

Proposition 2.6: Let \(n \geq 3 \) be an odd integer, then

\[
\text{Ord}(G_2(2^k n)) = 2^{(k+2)} \] with \(\alpha \geq 3 \).

For simplicity throughout this section we take \(n \geq 3 \) to be an integer and \(n = 2^k p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_m^{\alpha_m} (\alpha \geq 3) \) its primary decomposition with at least one of the \(\alpha_i \) is not null. Now we begin to study \(G_2(n) \). Consider the following systems:

\[
\begin{align*}
x - 1 &= 2^{\alpha-1} p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_m^{\alpha_m} K_1 \\
x + 1 &= K_2 \\
x - 1 &= p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_m^{\alpha_m} K_1' \\
x + 1 &= 2^{\alpha-1} K_2'
\end{align*}
\]

It’s clear that the first system has two solutions modulo \(n \) and 1 is one of these solutions, we note by \(y_0 \) the other solution. Also the second system has two solutions modulo \(n \), denoted...
by y_1 and y_2.
We have:

$$y_0 = 2^{n/2} - 1 \cdot p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m} = y_1$$

and $y_2 = y_1 + 2^{n/2} - 1 \cdot p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m}$, therefore $y_2 y_1 = 1 + 2^{n/2} - 1 \cdot p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m}$.

Since y_1 is odd, then $y_2 y_1 = y_1$ and $y_2 = y_1 y_0$.

So, the set $\{1, y_0, y_1, y_2 \}$ is a subgroup of $G_2(n)$, which is noted by $G_2^0(n)$. Finally remark that:

$$G_2^0(n) = \{1, y_0 \} \times \{1, y_1 \}.$$

Definition 2.5: Let x be a square root of the unity modulo n. We said that x is of the first category if 2^n divides $x - 1$, else we said that x is of the second category.

Remark:
Let $x \in G_2^0(n)$, then x is of the first category if and only if $x = 1$.

Definition 2.6: Let x be a square root of unity modulo n. x is said to be initial if all prime factors of n divide $x - 1$ except only one p_i, we said that x is associated with p_i. And we note:

$$x - 1 = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_i^{\alpha_i} \cdots p_m^{\alpha_m} K.$$

where K is an integer not divisible by p_i.

Note that the initial square roots of the unity associated with p_i are the solutions of the following systems:

$$\begin{cases} x - 1 = 2^{n-1} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{i-1}^{\alpha_{i-1}} p_{i+1}^{\alpha_{i+1}} \cdots p_m^{\alpha_m} K \\ x + 1 = p_1^{\alpha_1} K' \end{cases}$$

and

$$\begin{cases} x - 1 = 2^{n-1} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_i^{\alpha_i} \cdots p_{i-1}^{\alpha_{i-1}} p_{i+1}^{\alpha_{i+1}} \cdots p_m^{\alpha_m} K \\ x + 1 = 2^{n-1} p_1^{\alpha_1} K' \end{cases}$$

Since each of these systems has two solutions modulo n, therefore there exist 4 initial square roots of the unity associated with p_i.

Proposition 2.7: Let the system:

$$\begin{cases} x - 1 = 2^{n-1} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{i-1}^{\alpha_{i-1}} p_{i+1}^{\alpha_{i+1}} \cdots p_m^{\alpha_m} K \\ x + 1 = p_1^{\alpha_1} K' \end{cases}$$

If we denote by x_1 and x_2 the solutions of this system, then

$$x_1 = y_0 x_2.$$

Proof:
We have $x_1 = x_2 + 2^{n-1} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m}$, therefore $x_1 x_2 = 1 + 2^{n-1} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m} x_2$. Since x_2 is odd, then $x_1 x_2 = y_0$ so that $x_1 = x_2 y_0$.

Remark:

In the same way, we show that the product of the solutions of the following system:

$$\begin{cases} x - 1 = 2^{n-1} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_i^{\alpha_i} \cdots p_m^{\alpha_m} K \\ x + 1 = 2^{n-1} p_1^{\alpha_1} K' \end{cases}$$

is equal to y_0.

Proposition 2.8: there exists an only initial square root of the unity associated with p_i and of the first category.

Proof:
Indeed, this square root of the unity is the only solution of the system

$$\begin{cases} x - 1 = 2^{n-1} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_i^{\alpha_i} \cdots p_m^{\alpha_m} K' \\ x + 1 = p_1^{\alpha_1} K' \end{cases}$$

We denote by $G_2^0_1(n)$, the cyclic subgroup of order 2 which is formed by 1 and the initial square root of the unity associated with p_i and of the first category.

Proposition 2.9: Let us consider these systems:

$$\begin{cases} x - 1 = 2^{s-1} p_1^{\sigma_1} p_2^{\sigma_2} \cdots p_i^{\sigma_i} \cdots p_m^{\sigma_m} K_1 \\ x + 1 = p_1^{\sigma_1} p_2^{\sigma_2} \cdots p_i^{\sigma_i} \cdots p_m^{\sigma_m} K_2 \\ x - 1 = p_1^{\sigma_1} p_2^{\sigma_2} \cdots p_i^{\sigma_i} \cdots p_m^{\sigma_m} K_3 \\ x + 1 = p_1^{\sigma_1} p_2^{\sigma_2} \cdots p_i^{\sigma_i} \cdots p_m^{\sigma_m} K_4 \end{cases}$$

where σ is a permutation of the set $\{1, 2, \ldots, m\}$, then the product of each solution of (1) by y_1 or y_2 is a solution of (2).

Proof:
Let x be a solution of (1), suppose that x is of the first category, that is

$$x = 1 + 2^{n-1} p_1^{\sigma_1} p_2^{\sigma_2} \cdots p_i^{\sigma_i} \cdots p_m^{\sigma_m} K_1.$$

Therefore

$$y_1 x = (1 + 2^{n-1} p_1^{\sigma_1} p_2^{\sigma_2} \cdots p_i^{\sigma_i} \cdots p_m^{\sigma_m} K_1) (1 + 2^{n-1} p_1^{\sigma_1} p_2^{\sigma_2} \cdots p_i^{\sigma_i} \cdots p_m^{\sigma_m} K_2)$$

$$= 1 + 2^{n-1} p_1^{\sigma_1} p_2^{\sigma_2} \cdots p_i^{\sigma_i} \cdots p_m^{\sigma_m} (2^n K_1 + p_1^{\sigma_1} p_2^{\sigma_2} \cdots p_i^{\sigma_i} \cdots p_m^{\sigma_m} K_3 + n K^p).$$

Since 2^{n-1} does not divides K and $p_1^{\sigma_1} p_2^{\sigma_2} \cdots p_i^{\sigma_i} \cdots p_m^{\sigma_m}$ do not divide K_1, then $2^{n-1} p_1^{\sigma_1} p_2^{\sigma_2} \cdots p_i^{\sigma_i} \cdots p_m^{\sigma_m}$ does not divide $2^n K_1 + p_1^{\sigma_1} p_2^{\sigma_2} \cdots p_i^{\sigma_i} \cdots p_m^{\sigma_m} K_3$. Hence $y_1 x$ is a solution of (2).

If z is the other solution of (1), then $z = y_0 x$. Thus,

$$z y_1 = y_0 (x y_1).$$
Since \((x, y_1)\) is a solution of (2), therefore \(z, y_1\) is also a solution of (2).

Finally, we have the following result:

Corollary 2.4: \(G_2^p(n)\) is a group and we have:

\[
G_2^p(n) \simeq G_2^+ (n) \times G_2^0 (n).
\]

Proof:

The initial square roots of the unity associated with \(p_i\) are the solutions of the following systems:

\[
\begin{cases}
-x = 2^{n-1}p_1^{\alpha_1}p_2^{\alpha_2} \cdots p_i^{\alpha_i} \cdots p_m^{\alpha_m} K \\
-x = p_i^{\alpha_i} K' \\
-x = p_1^{\alpha_1}p_2^{\alpha_2} \cdots p_i^{\alpha_i} \cdots p_m^{\alpha_m} K \\
-x = 2^{n-1}p_1^{\alpha_1}p_2^{\alpha_2} \cdots p_m^{\alpha_m} K'
\end{cases}
\]

We deduce that \(\text{Ord}(G_2^p(n)) = 8\).

From the previous proposition, we know that the solutions of (2) are the product of the solutions of (1) by \(y_1\). If we note by \(x\) a solution of (1), then the solutions of (1) are \(x\) and \(x\cdot y_0\). So, the initial square roots of the unity associated with \(p_i\) are \(\{x, x\cdot y_0, x\cdot y_1, x\cdot y_0\cdot y_1\}\), it follows:

\[
G_2^p(n) = \{1, y_0, y_1, y_0\cdot x, x\cdot y_0, x\cdot y_1, x\cdot y_0\cdot y_1\}.
\]

And obviously, we have

\[
G_2^p(n) \simeq G_2^+ (n) \times G_2^0 (n).
\]

More generally, we have the following result:

Theorem 2.4: The map

\[
\varphi: G_2^+ (n) \times \cdots \times G_2^0 (n) \times G_2^0 (n) \rightarrow G_2(n)
\]

\[
(x_1, \ldots, x_m, y) \mapsto x_1 \times \ldots \times x_m \cdot y
\]

is an isomorphism of groups.

Proof:

In the same way as the previous theorem, we show that \(\varphi\) is an injective morphism of groups and we conclude by cardinality.

Remark:

The group \(G_2^0(n)\) is not cyclic, but we have \(G_2^0(n) = \{1, y_0\} \times \{1, y_1\}\), thus:

\[
G_2(n) \simeq G_2^+(n) \times G_2^+(n) \times G_2^0(n) \times \{1, y_0\} \times \{1, y_1\}.
\]

Finally, we have the following result:

Corollary 2.5: As it is noted above, we have

\[
G_2(n) = \langle y_0, y_1, x_1, x_2, \ldots, x_m \rangle.
\]

Now we give an algorithm in MAPLE that computes \(x_j, y_j\) and \(y_1\), i.e. a generating set of \(G_2(n)\).

The solution \(y_0\) is computed by the formula \(y_0 = n/2 + 1\) and \(y_1\) is a solution of the system:

\[
\begin{cases}
x_1 = p_1^{\alpha_1}p_2^{\alpha_2} \cdots p_m^{\alpha_m} K_1 \\
x + 1 = 2^{n-1}K_2
\end{cases}
\]

we will choose that satisfied this system

\[
\begin{cases}
x - 1 = p_1^{\alpha_1}p_2^{\alpha_2} \cdots p_m^{\alpha_m} K_1 \\
x + 1 = 2^a K_2
\end{cases}
\]

Since \((*)\) implies that \(2^a K_2 - (n/2^a) K_1 = 2\), so we get \(K_2\) and \(K_1\) with the Bezout algorithm. Therefore \(y_1 = 2^a K_2 - 1 + n/2\).

The other \(x_i\) are computed in the same way as the previous case.

\[
\begin{align*}
\text{Gene} & := \text{proc}(n) \quad \text{local} \ a, \ LB, \ i, \ LFact, \ GEN; \\
\text{GEN} & := \{\}; \\
a & := \text{ifactors}(n[2][1][2]); \\
\text{GEN} & := \{\text{op}(\text{GEN}), n/2 + 1\}; \\
\text{LB} & := \text{bezout}(2^a, n/2^a, 2); \\
\text{GEN} & := \{\text{op}(\text{GEN}), \text{LB}[1] \times 2^a - 1 + n/2 \mod n\}; \\
\text{LFact} & := \text{ifactors}(n/2^a)[2]; \\
& \text{for} \ i \text{ from} \ 1 \text{ to} \ \text{nops}(
\text{LFact}) \text{ do} \\
\text{LB} & \text{ := bezout(}\text{LFact}[i][1]\times\text{LFact}[i][2], \\
& n/\text{LFact}[i][1]\times\text{LFact}[i][2]), 2); \\
\text{GEN} & := \{\text{op}(\text{GEN}), \text{LB}[1] \times \}
\end{align*}
\]

An application example:

To find the generators of the group of square root of the unity modulo \(8 \times 11^2 \times 13\), we can use the previous algorithm with this command:

\[
\text{Gene} _2(8 \times 11^2 \times 13);
\]

We have the following result \([4863, 4421, 6733, 3433]\), that is the list of generators. We note that the first value of the given list is \(y_0\), and the second is \(y_1\).

Remark:

The choice of \(y_1\) allows us to have:

\[
y_0 \cdot y_1 \prod_{i=1}^{m} x_i = -1.
\]
Indeed, \(y_0 \cdot y_1 \) is the solution of \((*)\). Therefore
\[
y_0 \cdot y_1 \prod_{i=1}^{m} x_i = (1 + p_1^{a_1}p_2^{a_2} \cdots p_m^{a_m} K_1) \prod_{i=1}^{m} (1 + 2^{n_i}p_1^{a_1}p_2^{a_2} \cdots p_i^{a_i} \cdots p_m^{a_m} K_i)
\]
\[
= (1 + p_1^{a_1}p_2^{a_2} \cdots p_m^{a_m} K_1)(1 + \sum_{i=1}^{m} 2^{n_i}p_1^{a_1}p_2^{a_2} \cdots p_i^{a_i} \cdots p_m^{a_m} K_i + K_n)
\]
\[
= 1 + [p_1^{a_1}p_2^{a_2} \cdots p_m^{a_m} K_1 + \sum_{i=1}^{m} 2^{n_i}p_1^{a_1}p_2^{a_2} \cdots p_i^{a_i} \cdots p_m^{a_m} K_i] + K_n
\]

It’s clear that the term between the brackets is not divisible by \(2^{n_1-1}p_1, p_2^{a_2} \cdots p_m^{a_m}\). So, \(y_0 \cdot y_1 \prod_{i=1}^{m} x_i\) is a solution of this system
\[
\begin{align*}
x - 1 &= K_1 \\
x + 1 &= 2^{n_1-1}p_1p_2^{a_2} \cdots p_m^{a_m} K_2
\end{align*}
\]
Since the solutions of this system are -1 and \((n/2 - 1)\). To conclude, just shows that \(2^n\) divides \(y_0 \cdot y_1 \prod_{i=1}^{m} x_i + 1\).

We have
\[
y_0 \cdot y_1 \prod_{i=1}^{m} x_i + 1 = (y_0 \cdot y_1 + 1) \prod_{i=1}^{m} x_i - (\prod_{i=1}^{m} x_i - 1)
\]
so it’s clear that \((y_0 \cdot y_1 + 1)\) is divisible by \(2^n\) because \(y_0 \cdot y_1\) is solution of \((*)\), and
\[
\prod_{i=1}^{m} x_i - 1 = \sum_{i=1}^{m} 2^{n_i}p_1^{a_1}p_2^{a_2} \cdots p_i^{a_i} \cdots p_m^{a_m} K_i + K_n,
\]
\[
\text{thus, } \prod_{i=1}^{m} x_i - 1 \text{ is divisible by } 2^n \text{ it follow that } 2^n \text{ divides } y_0 \cdot y_1 \prod_{i=1}^{m} x_i + 1.
\]

Now we give an explicit formula for \(y_1\) in special cases.

Proposition 2.10: Let \(n\) be an integer of the form \(8b\), with \(b\) is an odd positive integer, then:
\[
\begin{align*}
y_1 &= n/4 + 1 \text{ if } b \equiv 1[4], \\
y_1 &= 3n/4 + 1 \text{ if } b \equiv 3[4].
\end{align*}
\]

Proof:
\[
\begin{itemize}
 \item On the first hand, we have \((n/4 + 1)^2 = (2p + 1)^2 = 1 + 4p(p + 1)\), and since \(2\) divides \(p + 1\), then \(n\) divides \(4p(p + 1)\). Hence \((n/4 + 1)^2 = 1\).
 \\
 On the other hand, \((n/4 + 1) - 1 = n/4\) is divisible by all the prime factors of \(n\). Since \((n/4 + 1) + 1 = 2(p + 1)\) and \(b \equiv 1[4]\), then \(p + 1\) is divisible by \(2\) and not by \(4\). Thus \((n/4 + 1) + 1\) is divisible by \(4\) and not by \(8\), hence the result.
 \\
 \item We will show this point in the same way.
\end{itemize}

Proposition 2.11: Let \(n\) be an integer of the form \(2^a b\) with \(b\) is an odd positive integer and \(a \geq 3\), if \(b \equiv 1[2^{a-1}]\), the solution of \((*)\) is:
\[
y_2 = \frac{(2^{a-1} - 1)n}{2^{a-1}} + 1.
\]

Therefore
\[
y_1 = \frac{(2^{a-2} - 1)n}{2^{a-1}} + 1.
\]

Proof:
We have
\[
y_2^2 = (2b(2^{a-1} - 1) + 1)^2
\]
\[
= 1 + 4b^2(2^{a-1} - 1)^2 + 4b(2^{a-1} - 1)
\]
\[
= 1 + 4b(2^{a-1}b(2^{a-2} - 1) + 2^{a-1} + b - 1).
\]

Since \(2^{a-1}\) divides \(b - 1\), then \(n\) divides \(4b(2^{a-1}b(2^{a-2} - 1) + 2^{a-1} + b - 1)\), therefore \(y_2 = 1\).

It’s clear that all the prime factors of \(n\) divide \(y_2 - 1\). On the other hand, \(y_2 + 1 = 2b(2^{a-1} - 1) + 2 = 2^a b - 2(b - 1)\), then \(2^n\) divides \(y_2 + 1\). So, \(y_2\) is solution of \((*)\).

We know that \(y_1 = y_2 - n/2\), it follows the expression of \(y_1\).

III. Conclusion

For the cardinal of \(G_2(n)\), we have the following theorem:

Theorem 3.1: Let \(n \geq 3\) be an odd integer, then:
\[
\begin{itemize}
 \item \(\text{Ord}(G_2(n)) = 2^{\omega(n)}\)
 \\
 \item \(\text{Ord}(G_2(2n)) = 2^{\omega(n)}\)
 \\
 \item \(\text{Ord}(G_2(4n)) = 2^{\omega(n) + 1}\)
 \\
 \item \(\text{Ord}(G_2(2^a n)) = 2^{\omega(n) + 2}\) with \(a \geq 3\)
\end{itemize}

where \(\omega(n)\) is the number of distinct prime factors of \(n\).

Now we give an algorithm that computes a generating set for \(G_2(n)\), where \(n\) is an integer.

```plaintext
Gene_2 := proc(n) local a, LB, i, LFact, GEN; GEN := []; LB := []; if n mod 2 = 1 then LFact := ifactors(n)[2]; for i from 1 to nfs(LFact) do LB := Bezout(LFact[i]1) LFact[i][2], n LFact[i][1] LFact[i][2], 2); GEN := [op(GEN), LB[i]1]; LFact[i][1] LFact[i][2] 1 mod n]; end; eval(GEN); else a := ifactors(n)[2][1][2]; if a = 1 then LFact := ifactors(n)[2]; for i from 1 to nfs(LFact) do LB := Bezout(LFact[i]1) LFact[i][2], n LFact[i][1] LFact[i][2], 2); GEN := [op(GEN), LB[i]1]; LFact[i][1] LFact[i][2] 1 mod n]; end; eval(GEN); elif a = 2 then GEN := [op(GEN), n/2 + 1];...
```
Algorithm 1.5

Complexity of the algorithm:

It's clear that the complexity of the Algorithm 1.5 is the same as the Algorithm 1.1. Recall that the number of distinct prime factors of a number n is denoted ω(n). We know that ω(n) = O(ln(ln n)) (see [9] and [10]), and the complexity of the Extended Euclidean algorithm is O(ln² n) (see [3] and [4]). Therefore the complexity of Algorithm 1.1 without the factorization is O(ln(ln n) ln² n).

REFERENCES