A GA-Based Role Assignment Approach for Web-based Cooperative Learning Environments

Yi-Chun Chang and Jian-Wei Li

Abstract—Web-based cooperative learning focuses on (1) the interaction and the collaboration of community members, and (2) the sharing and the distribution of knowledge and expertise by network technology to enhance learning performance. Numerous research literatures related to web-based cooperative learning have demonstrated that cooperative scripts have a positive impact to specify, sequence, and assign cooperative learning activities. Besides, literatures have indicated that role-play in web-based cooperative learning environments enhances two or more students to work together toward the completion of a common goal. Since students generally do not know each other and they lack the face-to-face contact that is necessary for the negotiation of assigning group roles in web-based cooperative learning environments, this paper intends to further extend the application of genetic algorithm (GA) and propose a GA-based algorithm to tackle the problem of role assignment in web-based cooperative learning environments, which not only saves communication costs but also reduces conflict between group members in negotiating role assignments.

Keywords—genetic algorithm (GA); role assignment; role-play; web-based cooperative learning.

I. INTRODUCTION

Collaboration learning has been defined as “small groups of learners working together as a team to solve a problem, to complete a task, to discover information, and to accomplish a common goal” [1]. The cooperative learning model requires dividing students into several groups so that the group members need to work together to accomplish a shared or a common goal rather than working alone [2], [3]. In such learning process the common goal involves some group tasks, and each group member is responsible for one or more group tasks [4]. Ellis and Whalen also indicated that the essential feature of cooperative learning is one student helping other students to be successful [5]. Furthermore, communication and information exchange among group members is the most important action among partners to complete group goals [6], [7].

With the popularity of the Internet, cooperative learning is not limited to traditional classroom teaching [8]. Web-based collaborative learning is an emerging research field that focuses on 1. The interaction and the collaboration of community members, and 2. The sharing and the distribution of knowledge and expertise by network technology to enhance learning performance [9], [10]. Numerous research literatures related to web-based collaborative learning have demonstrated that cooperation scripts have a positive impact to specify, sequence, and assign collaborative learning activities [11].

Slavin have defined the roles as prescribed functions that guide collaboration between group members [12]. Morris et al. also indicate that the structure provided by roles facilitates members to concentrate on the task and the collaboration [13]. Besides, the mechanism of role-play in web-based cooperative learning environments enhances two or more students to work together toward the completion of a common goal [14]-[16].

As a result, group members can take more responsibilities to find more personal values and are more likely to become agents in their own learning [10], [17]. Hence, completing a common goal heavily depends on the individual contributions of group members [10]. In traditional classroom learning environments, group members can discuss with each other to negotiate the assignment of group roles. However, in web-based cooperative learning environments, students generally do not know each other [18] and they lack the face-to-face contact that is necessary for the negotiation of assigning group roles. Besides, in web-based cooperative learning environments, instructors are having difficulties to monitor the interaction and negotiation of whole groups. Therefore, web-based cooperative learning environments need to provide help for assigning group roles to individual members so that each member has individual responsibilities for completing a common goal.

The genetic algorithm (GA) approach was firstly proposed by Holland in 1975 [19], which has been shown to successfully optimize a wide range of objective functions [20]. The attractiveness of using GA is due to the following features: natural metaphor, simplicity, stochastic move, adaptively, positive feedback, and high quality solutions [20]. Thus, we intend to further extend the application of GA and propose a GA-based algorithm to tackle the problem of role assignment in web-based cooperative learning environments, which not only saves communication costs but also reduces conflict between group members in negotiating role assignments.

The rest of this paper is organized as follows: Section II briefly reviews related works. Section III presents the GA-based role assignment approach in detail. Finally, Section IV offers conclusions.
II. RELATED WORKS

The GA approach was firstly proposed by Holland in 1975 [19], which has been widely applied to solve an optimization problem by a systematic way [20]. The standard GA consists of several executing steps, namely chromosome encoding and population initialization, fitness evaluation, selection, crossover, and mutation [19], [21]-[25], which are further reviewed within the following subsections.

A. Chromosome Encoding and Population Initialization

Chromosome encoding is for transferring a candidate solution into a chromosome, according to a given optimization problem. A chromosome consists of several genes. Depending on the specific optimization problem, a gene can be encoded as a binary bit, an integer or a real number. A population is composed of several chromosomes, while an initial one is usually randomized generated. Through a number of developed genetic evolutionary processes, the population evolves from one to next generation to improve the quality of chromosomes. The population size, i.e., the number of chromosomes in a population, is kept constant.

B. Fitness Evaluation

Fitness evaluation is for determining which chromosomes are better solutions for the optimization problem. The fitness function can be used to determine which chromosomes are better solutions for the optimization problem. The fitness value derived from the fitness function needs to be defined according to the specific optimization problem. The fitness value derived from the fitness function.

C. Selection

According to the roulette selection [19], the chromosomes that have fitter fitness values possess higher probability to be selected to propagate offspring.

D. Crossover

It is a genetic evolutionary process, in which each individual has a chance to interchange gene information from two parent chromosomes. Crossover is performed with a chosen crossover probability. A random number can be generated between [0.0, 1.0] for each mating pair. If the random number is less than the crossover probability, the crossover is performed to propagate offspring. Otherwise, no crossover is performed. There are two broadly adopted crossover operators [26]. One is the single-point crossover, which yields offspring by interchanging all the genes after a random position from the parent chromosomes. The other operation is the two-point crossover, which generates two random positions and interchanges the genes between the two positions from the parent chromosomes.

E. Mutation

Being a genetic evolutionary process, this operation creates a new gene that does not inherit from the parent chromosomes. Every bit in an offspring chromosome could mutate with a predefined mutation probability. In general, mutation is performed with a very low mutation probability. For performing mutation, two genes are randomly selected to exchange their positions within a certain chromosome.

F. Stop Criterion

In general, the stop criterion is set to 100 generations. That is, the steps B-E are iteratively performed 100 times. After 100 generations, a near optimal solution can be derived by the fitness function.

III. THE PROPOSED APPROACH

This section presents the GA-based role assignment approach, which includes A. The problem definition of the role assignment problem, and B. The execution steps of the proposed approach.

A. The Problem Definition

We consider the role assignment problem by exploring the following scenario: in network supported cooperative learning environments, a group is the combination of K members who possess M features to cooperatively complete a common goal. \(F_{km}, 1 \leq k \leq K \) denotes the \(m\)th feature for the \(k\)th member \(L_k\). For the \(m\)th feature of the \(k\)th member \(L_k\), \(\{f_{km,1}, f_{km,2}, \ldots, f_{km,N}\}\) denotes the set of \(N\) factors, where \(f_{km,n}, 1 \leq k \leq K, 1 \leq m \leq M, 1 \leq n \leq N\) denotes the \(n\)th factor, which is a binary value. If the \(k\)th member \(L_k\) possesses the \(n\)th factor for the \(m\)th feature, \(f_{km,n}=1\). Otherwise, \(f_{km,n}=0\). Suppose that the cooperative script includes \(P\) roles. For the \(p\)th role \(R_p\), \(1 \leq p \leq P\), \(\{R_{p,1}, R_{p,2}, \ldots, R_{p,M}\}\) denotes the set of \(M\) features, where \(R_{p,m}, 1 \leq p \leq P, 1 \leq m \leq M\) denotes the \(m\)th corresponding feature for the \(p\)th role \(R_p\) that needs to match with the \(m\)th feature for a member. For the \(m\)th corresponding feature of the role \(R_p\), \(\{r_{pm,1}, r_{pm,2}, \ldots, r_{pm,N}\}\) denotes the set of \(N\) factors, where \(r_{pm,n}, 1 \leq p \leq P, 1 \leq m \leq M, 1 \leq n \leq N\) denotes the corresponding \(n\)th factor, which is a binary value. If the \(p\)th role involves the \(n\)th factor for the \(m\)th feature, \(r_{pm,n}=1\). Otherwise, \(r_{pm,n}=0\).

Table I defines the parameters that are instrumental to the problem description.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K)</td>
<td>(2 \leq K \leq 6)</td>
<td>The number of members</td>
</tr>
<tr>
<td>(L_k)</td>
<td>(1 \leq k \leq K)</td>
<td>The (k)th member</td>
</tr>
<tr>
<td>(M)</td>
<td>(M \geq 1)</td>
<td>The number of features</td>
</tr>
<tr>
<td>(F_{km})</td>
<td>(1 \leq k \leq K, 1 \leq m \leq M)</td>
<td>The (m)th feature for the member (L_k)</td>
</tr>
<tr>
<td>(N)</td>
<td>({n_1, n_2, \ldots, n_N})</td>
<td>The number of factors</td>
</tr>
<tr>
<td>(f_{km,n})</td>
<td>(1 \leq k \leq K, 1 \leq m \leq M, 1 \leq n \leq N)</td>
<td>The (n)th factor of the (m)th feature for the (k)th member (L_k); (f_{km,n}=1) if the (k)th member (L_k) possesses the (n)th factor of the (m)th feature, (f_{km,n}=0).</td>
</tr>
<tr>
<td>(P)</td>
<td>(P \geq 2)</td>
<td>The number of roles</td>
</tr>
<tr>
<td>(R_p)</td>
<td>(1 \leq p \leq P)</td>
<td>The (p)th role</td>
</tr>
</tbody>
</table>
Since \(r_{p,m,n} \), 1 \(\leq p \leq P \), 1 \(\leq m \leq M \) and 1 \(\leq n \leq N \), is a binary value, \(R_{p,m} = \{ r_{p,m,1}, r_{p,m,2}, \ldots, r_{p,m,N} \} \) is a binary string. The converted formula for converting a binary string into a decimal number is derived as

\[
R_{p,m}(dec.) = \sum_{n=1}^{N} r_{p,m,n} \times 2^{(N-n)}, \quad 1 \leq p \leq P \text{ and } 1 \leq m \leq M. \tag{1}
\]

Similarly, for the \(k \)th member \(L_k \), \(F_{k,m} = \{ f_{k,m,1}, f_{k,m,2}, \ldots, f_{k,m,N} \} \), 1 \(\leq p \leq P \) and 1 \(\leq m \leq M \), can be converted into a decimal number that is derived using

\[
F_{k,m}(dec.) = \sum_{n=1}^{N} f_{k,m,n} \times 2^{(N-n)}, \quad 1 \leq p \leq P \text{ and } 1 \leq m \leq M. \tag{2}
\]

The objective function \(Z \) that defines the problem of role assignment can be derived as

\[
\text{Min. } Z = \frac{\sum_{i=1}^{K} \left(\sum_{p=1}^{P} x_{i,p} \times \sum_{m=1}^{M} \left[F_{k,m}(dec.) - R_{p,m}(dec.) \right] \right)}{\sum_{p=1}^{P} x_{i,p}}, \tag{3}
\]

subject to

\[
\begin{align*}
\sum_{i=1}^{K} x_{i,p} &\geq 1, \quad 1 \leq p \leq P. \tag{4} \\
\sum_{p=1}^{P} x_{i,p} &\leq 2, \quad 1 \leq k \leq K. \tag{5}
\end{align*}
\]

Equation (3) indicates that the objective function, in which the smaller value is suitable for the problem solution in this paper. Constraint Equation (4) indicates that each role needs to be assigned to at least one member. Constraint Equation (5) indicates that the number of assigned role for each member needs to be less than two.

B. The Execution Steps of the Proposed Approach

The proposed approach contains several steps in finding the near optimal solution for the aforementioned definition problem. These steps are presented as follows:

Step 1. Normalization

The relevant parameters for deriving fitness function need to be normalized. The normalized formula for \(R_{p,m,n} \), 1 \(\leq p \leq P \) and 1 \(\leq m \leq M \), denotes the \(m \)th corresponding feature for the \(p \)th role \(R_p \), can be derived using

\[
R_{p,m} = \frac{R_{p,m}(dec.) - \min_{k=1-K, p=1-P, m=1-M} (R_{p,m}(dec.) \mid F_{k,m}(dec.) \mid)}{\max_{k=1-K, p=1-P, m=1-M} (R_{p,m}(dec.) \mid F_{k,m}(dec.) \mid) - \min_{k=1-K, p=1-P, m=1-M} (R_{p,m}(dec.) \mid F_{k,m}(dec.) \mid)}, \tag{6}
\]

where 1 \(\leq p \leq P \) and 1 \(\leq m \leq M \).

For \(F_{k,m} \), 1 \(\leq k \leq K \) and 1 \(\leq m \leq M \), denotes the \(m \)th feature for the \(k \)th member \(L_k \), the normalized formula can be derived using

\[
F_{k,m} = \frac{F_{k,m}(dec.) - \min_{k=1-K, p=1-P, m=1-M} (R_{p,m}(dec.) \mid F_{k,m}(dec.) \mid)}{\max_{k=1-K, p=1-P, m=1-M} (R_{p,m}(dec.) \mid F_{k,m}(dec.) \mid) - \min_{k=1-K, p=1-P, m=1-M} (R_{p,m}(dec.) \mid F_{k,m}(dec.) \mid)}, \tag{7}
\]

where 1 \(\leq k \leq K \) and 1 \(\leq m \leq M \).

Step 2. Chromosome Encoding and Population Initialization

The chromosome refers to a candidate solution, which is denoted as a KP-dimensional vector \([x_{1,1}, x_{1,2}, \ldots, x_{1,P}, x_{2,1}, x_{2,2}, \ldots, x_{2,P}, \ldots, x_{K,P}]\). As Table I depicts, \(x_{kp} \), 1 \(\leq k \leq K \) and 1 \(\leq p \leq P \), is a binary value. If the \(k \)th member \(L_k \) is assigned the \(p \)th role \(R_p \), \(x_{kp} = 1 \). Otherwise, \(x_{kp} = 0 \).

Step 3. Fitness Evaluation

The fitness function of the proposed measures the quality of chromosomes solutions which satisfy (3)-(5). However, the chromosomes generated by the proposed approach may violate one or more of Constraint Equations (3)-(5). To cope with this problem, we use the fitness function which incorporates penalty terms to evaluate a chromosome. This paper denotes the penalty terms corresponding to Constraint Equations (3)-(5) as follows:

- \(\alpha \) penalty: According to Constraint Equation (4), this term penalizes cases in which a role is not be taken charge of by any member, which can be derived as

\[
\alpha = \sum_{p=1}^{P} \max \left(0, 1 - \sum_{k=1}^{K} x_{kp} \right). \tag{8}
\]

- \(\beta \) penalty: According to Constraint Equation (5), this term penalizes cases in which the number of the role assigned to a member exceed two, which can be derived as

\[
\beta = \sum_{k=1}^{K} \max \left(0, \sum_{p=1}^{P} x_{kp} - 2 \right). \tag{9}
\]

Since the relevant parameters are normalized in Step 1, the objective function \(Z' \) is updated as follows,

\[
\text{Min. } Z' = \sum_{p=1}^{P} \sum_{m=1}^{M} \left[x_{kp} \times \sum_{m=1}^{M} \left[F_{k,m}(dec.) - R_{p,m} \right] \right], \tag{10}
\]

Hence, in this paper, the fitness function \(F(x) \) for evaluating the fitness of a chromosome \(x \) is derived as

\[
F(x) = Z' + \alpha + \beta. \tag{11}
\]
A smaller fitness value derived by (11) represents a better chromosome.

Step 4. Selection
This paper adopts the roulette selection that a fitter chromosome is selected to propagate offspring. Given the set of the fitness value for Q chromosomes in a population is \(f_1(x), f_2(x), ..., f_Q(x) \), where \(1 \leq q \leq Q \). The probability of the \(i^{th} \) chromosome is selected to propagate child chromosomes is defined as

\[
prob(f_i(x)) = \frac{f_i(x)}{\sum_{j=1}^{Q} f_j(x)}, 1 \leq i \leq Q. \tag{12}
\]

Step 5. Crossover
This paper adopts two-point crossover, while the crossover probability is set to 0.7.

Step 6. Mutation
For performing the mutation operation two genes are randomly selected to exchange their corresponding positions within a chromosome, and the mutation probability is set to 0.1.

Step 7. Stop Criterion
The evolution population is 100 generations.

IV. CONCLUSION
To save communication costs and then reduce conflict between group members for negotiating in web-based cooperative learning environments, this paper has proposed the GA-based approach to support role assignment. In future, we consider applying the proposed approach for actual learning environment to investigate the learning achievements and the satisfaction of students.

ACKNOWLEDGMENT
The research is supported by the National Science Council of the Republic of China under the grant number NSC101-2221-E-241-018 and NSC101-2221-E-324-043.

REFERENCES