Phenotypic and Genetic Parameters of Pre-Weaning Growth Traits in Gentile di Puglia Lambs
M. Selvaggi, F. Pinto, A. R. Pesce Delfino, A. Vicenti, C. Dario

Abstract—Data from 1731 Gentile di Puglia lambs, sired by 65 rams over a 5-year period were analyzed by a mixed model to estimate the variance components for heritability. The considered growth traits were: birth weight (BW), weight at 30 days of age (W30) and average daily gain from birth to 30 days of age (DG). Year of birth, sex of lamb, type of birth (single or twin), dam age at lambing and farm were significant sources of variation for all the considered growth traits. The average lamb weights were 3.85±0.16 kg at birth, 9.57±0.91 kg at 30 days of age and the average daily gain was 191±14 g. Estimates of heritability were 0.33±0.05, 0.41±0.06 and 0.16±0.05 respectively for the same traits. These values suggest there is a good opportunity to improve Gentile di Puglia lambs by selecting animals for growth traits.

Keywords—heritability estimate, growth traits, lambs, Gentile di Puglia

I. INTRODUCTION
The knowledge of non-genetic factors and the estimation of genetic parameters affecting growth performances are basics to formulate optimum breeding objectives and an effective programme of genetic improvement. Unavoidably estimates of heritability of genetic and phenotypic traits form the basis of such information.

The growth potential of the lambs is one of the most economically important traits in sheep production. The present study was undertaken to estimate the effects of various factors, such as the year and type of birth, the dam age, farm, sex and sire on growth traits (weights at birth, weight at 30 days of age and daily gains from birth to 30 days of age) in Gentile di Puglia lambs.

II. MATERIALS AND METHODS
A. Animals
Data concerning Gentile di Puglia purebred lambs, progeny of 1205 ewes and 65 rams, born over a 5-year period in seven different farms located in Puglia region were collected aiming to study growth performances. The animals were reared following the traditional management practices of the area (animals are left to graze in daylight hours and return to the sheepfolds at sunset leaving the ewes with their lambs over the night).

The initial dataset (n=1731) involved only the lambs born in October and November (the most prosperous lambing season); a total of 17 records were excluded from the study in order to reduce variability since they did not reach the weaning age (30±3 days).

Weight at birth (BW) and at 30 days of age (W30) was individually measured; daily gains (DG) from birth to 30 days of age were calculated. Data were classified on the basis of sire’s information, year and type of birth (single or twin), sex

M. Selvaggi, Department of Animal Health, University of Study Bari Aldo Moro, ITALY (phone: +39 0805443836; fax: +39 0805443925; email: mariaselvaggi@libero.it). F. Pinto, Department of Animal Production, University of Study Bari Aldo Moro, ITALY (phone: +39 0805442830; fax: +39 0805442822; email: fpinto@agr.uniba.it). A.R. Pesce Delfino, Department of Animal Health, University of Study Bari Aldo Moro, ITALY (phone: +39 0805443836; fax: +39 0805443925; email: arpd@libero.it). A. Vicenti, Department of Animal Production University of Bari Aldo Moro, Bari, ITALY (phone: +39 0805443106; fax: +39 0805442822; email: vicenti@agr.uniba.it). C. Dario, Department of Animal Health, University of Study Bari Aldo Moro, ITALY (phone: +39 0805443918; fax: +39 080-5443925; email: c.dario@veterinaria.uniba.it).
(male, female), dam age at lambing (<1.5, 1.5-2.5, 2.5-3.5, >3.5 years) and farm.

B. Statistical analysis

Variance components for BW, W30 and DG were estimated using the restricted maximum-likelihood method from Mixed Procedure of SAS software [5].

The data set was analyzed by the following model:

\[Y_{ijklmno} = \mu + B_i + L_j + S_k + F_l + DA_m + R_n + e_{ijklmno} \]

where \(Y_{ijklmno} \) = the individual observations for trait Y; \(\mu \) = the overall mean for the trait; \(B_i \) = the fixed effect of \(i^{th} \) birth year (1,...,5), \(L_j \) = the fixed effect of \(j^{th} \) type of birth (single, twin), \(S_k \) = the fixed effect of \(k^{th} \) sex (male, female), \(F_l \) = the fixed effect of \(l^{th} \) farm (1,...,7), \(DA_m \) = the fixed effect of \(m^{th} \) dam age at lambing (1,...4), \(R_n \) = the random effect of \(n^{th} \) sire (1,...,65) and \(e_{ijklmno} \) = the random error associated with measurement of each individual observation.

The error was assumed to be randomly and independently distributed, with mean of zero and a variance of \(\sigma^2 e \). Heritability estimates were based on sire component of variance (\(\sigma^2 s \)) as follow:

\[h^2 = 4 \frac{\sigma^2 s}{(\sigma^2 s + \sigma^2 e)} \]

The standard error of heritability was approximated using the method described by Becker [6].

III. Results and Discussion

Number of observations, phenotypic means and standard deviation (SD) for body weights of Gentile di Puglia lambs at birth and at 30 days of age, for average daily gain from birth to 30 days of age and the results of the analysis of variance for the same traits are shown in Table 1. Average BW and W30 were 3.85 and 9.57 kg respectively, the average daily gain was 191 g; these values were similar to those reported by Gallo et al. [7] in Gentile di Puglia breed.

As shown in Table 1, the effect of the year of birth on the W30 of the lambs and on the average daily gain was highly significant (P<0.001); a less significant results was found considering the effect of the year of birth on BW (P<0.05). As expected, the type of birth strongly affected all the considered traits (P<0.001). The sex of lamb affected mostly the W30 (P<0.001) than the birth weight and the average daily gain (P>0.01). The dam age was significant for all traits even if the significance was higher considering W30 and DG (P<0.01). This finding may be related to the dam’s milk production in terms of quantity. Finally the fixed effect of farm affected all the considered traits (P<0.05).

Estimates of sire’s and environmental variance components and heritability estimates are reported in Table 2. BW and W30 were highly heritable (0.33 and 0.41 respectively); similar results were previously reported by Dario et al. [8] for birth weight of Altamurana lambs (0.32), by Gabriilidis et al. [9] in Chios lambs (0.35) and by Ercanbrack and Price [10] in Targhee and Rambouillet lambs (0.30 and 0.26 respectively). Boujene and Kerfal [11] found estimates of 0.34 and 0.23 for BW and W30 respectively in a population of D’man lambs. The estimates of heritability of weaning weight reported in the literature ranging from 0.06 to 0.31 [12]-[15] being lower than that reported in the present study. A possible explanation for this finding may be related to the traditional selection conditions of the flock which aimed to increase the slaughtering weight over 10-12 kg.

Finally, a very low heritability value for DG (0.16) was found in the studied population, being close to the estimates of 0.08 and 0.16 for Black- Brown Mountain and White Alpine lambs [16]. Heritability estimate of Bonaiti et al. [17] for average daily gain from birth to 30 days of age in a sample of Merino d’Arles (0.24) was slightly higher if compared with that obtained in the present study. However, the heritability value found for DG in Gentile di Puglia was within the range reported by other authors (0.09-0.27) [14], [18]-[20].

IV. Conclusions

The high estimates of heritability of growth traits indicated that these traits, if included in selection criteria, could lead to body weight improvement of Gentile di Puglia lambs. In particular W30 could be used as a desirable selection criterion.

The results of the present study give some comforting and positive indications concerning the future possibility of this breed. In fact the estimates of heritability for weights at birth and at 30 days of age show a high genetic variability which let us suppose that this breed would answer rapidly to a selection programme.

Table I

<table>
<thead>
<tr>
<th>Trait</th>
<th>Mean (kg)</th>
<th>Standard Deviation (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW</td>
<td>11.32</td>
<td>124.99</td>
</tr>
<tr>
<td>W30</td>
<td>62.72</td>
<td>556.01</td>
</tr>
<tr>
<td>DG</td>
<td>17.01</td>
<td>415.23</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Trait</th>
<th>(\sigma^2_s) (kg)</th>
<th>(\sigma^2_e) (kg)</th>
<th>Heritability (h^2)</th>
<th>SE (h^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW</td>
<td>11.32</td>
<td>124.99</td>
<td>0.33</td>
<td>0.05</td>
</tr>
<tr>
<td>W30</td>
<td>62.72</td>
<td>556.01</td>
<td>0.41</td>
<td>0.06</td>
</tr>
<tr>
<td>DG</td>
<td>17.01</td>
<td>415.23</td>
<td>0.16</td>
<td>0.05</td>
</tr>
</tbody>
</table>

***P<0.001; **P<0.01; *P<0.05 df = degrees of freedom
REFERENCES

