Moisture Diffusivity of AAC with Different Densities

Tomáš Korecký, Kamil Ďurana, Miroslava Lapková, Robert Černý

Abstract—Method of determining of moisture diffusivity on two types of autoclaved aerated concretes with different bulk density is represented in the paper. On the specimens were measured one dimensional water transport only on liquid phase. Ever evaluation was done from moisture profiles measured in specific times by capacitance moisture meter. All values from capacitance meter were recalculated to moisture content by mass. Moisture diffusivity was determined in dependence on both moisture and temperature. The experiment temperatures were set at values 55, 65, 75 and 85°C.

Keywords—moisture diffusivity, autoclaved aerated concrete, capacitance moisture meter

I. INTRODUCTION

The research of moisture transport in porous building material nowadays have far-reaching relevance and hence this problem is solved by many laboratories. The concentration of moisture in porous building materials plays an important role. Because to calculate thermal and moisture parameters in capillary porous materials it’s necessary to know transport characteristic of moisture. They determine moisture transport in the given material. As main characteristic we choose moisture diffusivity. There are many experimental methods to determine of moisture diffusivity e.g. analysis of drying data, sorption kinetics and permeability measurement [1]. The experimental setup to measure sorptivity is used by many laboratories over the world. For decrypting moisture transport we didn’t use sorptivity but inverse analysis of moisture profiles. This rigorous method is based on irreversible thermodynamics. In frame of this theory was formulated transport law:

\[j = -\rho_u D \nabla u \]

or:

\[j = -\rho D \nabla u \]

where \(j \) (kg.m\(^{-2}\).s\(^{-1}\)) is density of flux, \(D \) (m\(^2\).s\(^{-1}\)) is diffusion coefficient, \(u \) (m\(^3\).m\(^{-3}\)) is moisture content of water by volume, \(u_r \) is relative concentration of water, \(\rho \) (kg.m\(^{-3}\)) is partial density of water, \(\rho_u \) (kg.m\(^{-3}\)) is bulk density of water – skeleton.

On the base of this transport law were set one of most often used theory so called diffusion theory of moisture transport. It is only substitution equal (1) or (2) to equal continuity which give diffusion equal:

\[\nabla (D \nabla u) = \frac{\partial u}{\partial t} \]

This relation is possible to be applied on transport water in liquid phase and also vapour. In this paper we only deal with liquid phase of water.

The density of moisture flux obtained following form:

\[j = \kappa \rho u \]

where \(\kappa \) (m\(^2\).s\(^{-1}\)) is the moisture diffusivity, \(\rho \) (kg.m\(^{-3}\)) is the partial density of the porous matrix and \(u \) (kg.kg\(^{-1}\)) is the moisture content by mass.

For measuring moisture profiles it is possible to use a lot of methods. Generally it is possible to divide them on two main groups [2]. Absolute (direct) method determines real content of water from separated piece. Relative method determines moisture content by measuring other physical parameters which are connected with moisture content. In this case it is necessary to find dependence between measured values and moisture.

We can mention chemical (K. Fischer’s method, method of calcium carbide), electromagnetic (spectrometric method, nuclear magnetic resonance [3], gamma-ray method [4], radiography or scanning neutron radiography [5]), other electrical (electric resistance method [6]) or traditional physical (pycnometric, tensiometric or hygrometric) methods.

Apart from primary effects, which are moisture content and gradient of moisture content, there could be also secondary effects. In this case we accepted only influence of temperature. Other secondary effects (gradient of temperature, dissolved substance concentration, pressure gradient, external volumetric fields etc.) were eliminated. This paper would like to demonstrate importance of the temperature on liquid water transport because there are only few works which consider influence of secondary effects. One example is the work by Krischer [7], who expressed the dependence of moisture diffusivity on temperature in the form of a simple formula including the dependence of the viscosity and surface tension on temperature. But this reference is old and difficult to access.

II. MOISTURE DIFFUSIVITY

Model set in the first chapter considers only gradient of moisture as driving power for moisture transport. Constant showing the proportionality between density of moisture flux and gradient of moisture we will call moisture diffusivity coefficient \(\kappa \).
This is the parameter characterizing transport of liquid moisture in porous material. All methods for determining moisture diffusivity use one-dimensional form,
\[\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(\kappa(u) \frac{\partial u}{\partial x} \right) \quad (5) \]
where \(u \) (kg.kg\(^{-1}\)) is the moisture content by mass, \(t \) (s) is the time period and \(x \) (m) is the distance from saturated surface of the specimen [8,9]. With boundary and initial conditions:
\[u(0, t) = u_1 \quad (6) \]
\[u(x, 0) = u_2 \quad (7) \]

Problem of moisture diffusivity calculating from moisture profiles has been solved by many years and many methods have been created how moisture diffusivity determined. For inverse analysis we use Boltzmann-Matano method [12]. This method determined moisture diffusivity from one-dimensional moisture transport and presume exclusion all other influences during measuring [9].

Boltzmann transformation transforms function two variables to function of one variable:
\[u(x, t) = \omega(\eta) \quad (8) \]
\[\eta = \frac{x}{2\sqrt{t}} \quad (9) \]
The advantage of the Boltzmann transformation consists of covering the partial differential equation (Eq. 5) into ordinary differential equation with new parameter \(\eta \),
\[\frac{d}{d\eta} \left(\kappa(\omega) \frac{d\omega}{d\eta} \right) + 2\eta \frac{d\omega}{d\eta} = 0 \quad (10) \]
with boundary conditions,
\[\omega(0) = u_1 \quad (11) \]
\[\omega(\infty) = u_2 \quad (12) \]

If we know distribution of moisture \(u(x) \) in specific time \(t \) (it means \(t \) is constant and \(u(x) \) is function of one variable \(x \)) we can formulate relation for the moisture diffusivity in dependence on moisture as \[11 \]
\[\kappa(u(x)) = \frac{1}{2\eta} \int_{x_0}^x \frac{d\omega}{dx} \, dx \quad (13) \]
where \(u_s = u(x_0) \).

III. THE EXPERIMENT

A. Material specimens
For measuring we used two types of autoclaved aerated concrete P 1.8 300 and P 4 500 with different compressive strength and also bulk density. From blocks were cut specimens with sizes 40 x 20 x 300 mm. Before measurement all specimens were dried in oven at temperature 105°C to constant weight. Then all specimens were isolated by water-vapour-proof isolation over the whole surface apart from both face sides. This solution guarantees one dimensional water transport. Material properties are shown in following tables.

In the Table I are properties declared by manufacturer Xella [13]; water vapour diffusion resistance factor is stated for both wet and dry state) and in the Table 2 there are shown measured properties by Jerman et al. [14].

<table>
<thead>
<tr>
<th>Material</th>
<th>Thermal conductivity [W.m(^{-1}).K(^{-1})]</th>
<th>Specific heat capacity [J.kg(^{-1}).K(^{-1})]</th>
<th>Water vapor diffusion resistance factor [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1.8 300</td>
<td>0.08</td>
<td>1000</td>
<td>5/10</td>
</tr>
<tr>
<td>P4 500</td>
<td>0.12</td>
<td>1000</td>
<td>5/10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>Matrix density [kg.m(^{-3})]</th>
<th>Total open porosity [% - V(_{\text{ol}})]</th>
<th>Bulk density [kg.m(^{-3})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1.8 300</td>
<td>2 451</td>
<td>87.4</td>
<td>304</td>
</tr>
<tr>
<td>P4 500</td>
<td>2 527</td>
<td>80.2</td>
<td>500</td>
</tr>
</tbody>
</table>

B. Measurement
The measurement of moisture profiles was made in conditions of one-side horizontal sample saturation. By this influence of gravity was eliminated. One-side saturation was set by sponge. It was placed in chamber which was connected with water tank. It guaranteed ideal Dirichlet boundary condition. The other face side was left open so that in certain time range the boundary condition of zero moisture flux or constant moisture corresponding to the initial state could be assumed. All measurements were made under specific condition in climatic chamber, i.e. temperatures 55, 65, 75, 85°C and relative humidity 50%. For measuring moisture content was used non-destructive method. It was made by capacitance moisture meter for each 1 cm of specimens in specific time periods. Values obtained from meter were calibrated to moisture content immediately after last measuring. Then each specimen was cut to 1 cm of thickness pieces in direction of moisture flux. Moisture content by mass was obtained by gravimetric method. From values of moisture meter and gravimetric method we can find out dependence (calibration curve) between meter values and moisture contents. By this way it is possible to recalculate all capacity meter values to moisture content by mass. This setup naturally brought some inaccuracies to the whole method. First, it is factual error of used moisture meter (based on current measurements, we estimate the error of moisture meter reading approximately 0.8 - 3.4 [-]; specific value of moisture content...
depends on calibration curve – see chapter 3), which cannot be
neglected. Second, whatever anomaly of specimen’s surface
could cause subsequent distortion of measured values (we tried
to avoid this by abrading it before the experiment).

C. Determination of moisture diffusivity

From measured moisture profiles in specific time and
temperatures we obtained sets of data which were used as
input parameters for calculating moisture diffusivity:

\[
u_i = f(x, t)
\]

Where \(u \) (kg kg\(^{-1}\)) is the moisture content by mass, \(x \) (m) is the
distance from saturated surface of the specimen, \(t \) (s) is the
time of water absorption and \(i \) is the index of measurement.

Moisture diffusivity in dependence on moisture content was
calculated for each temperature by specialized compu-
tation programme KADET [15]. This program in the first
smooth and interpolate measured data by linear filtration and from
these data calculated moisture diffusivity. The smooth
coefficient is unknown and it is set by user. Then the program
provides recursive verification of the results by computing
moisture distribution using implemented finite-element-
method software TRFEL [16] and displaying it towards
measured data. If there is correspondence of measured and
calculated moisture profiles the computation is finish on the
other hand is necessary change smooth coefficient and all
process repeat. By this way we generated values of moisture
diffusivity in dependence on moisture content for all
measured temperatures. The dependence on temperature could be found
out analytically from moisture diffusion curves.

IV. RESULTS

Values obtained by moisture meter, calibration curve,
moisture profiles and recursive verification are shown only for
one specimen, just to illustrate the method of evaluation of
measured data. The functions of moisture diffusivity in
dependence on moisture content are presented for all
temperatures and for both tested materials.

Fig. 1 shows values measured by moisture meter. First 3 cm
of specimen weren’t measured because this part was set in
apparatus and size of probe is too big.

By connection values of last meter measurement and
moisture content by mass (obtained by gravimetric method) we
can find out calibration curve for each specimen. Calibration
curve expresses the dependence between moisture meter
values and moisture content by mass. So we can calculate
moisture profiles in specific times.

In the Fig. 2 there is shown measured data and obtained
equation also with reliability.

![Fig. 2 Calibration curve of one specimen](image)

By using calibration curve we have distribution of moisture
content by mass on position and in specific times. At this
moment we recalculated all values of moisture content by mass
to moisture content by volume. From known bulk density it is
easy. The moisture content by volume represented moisture
distribution clearly.

Subsequently, we computed each moisture diffusivity
function. Before putting all results together, thus expressing its
dependence on temperature, we verified calculations towards
experimental data. As an example of good agreement we
present Figure 3, which is also an example of screen in
KADET software [15]:

Finally by this way we calculated all values of moisture
diffusivity in dependence on moisture and for set temperatures.
The results are potted in Fig. 4 – 7. In each figure are two
curves each for one type of measured material.
V. CONCLUSION

The moisture diffusivity in dependence on moisture was determined for two types of autoclaved aerated concretes with different bulk density. The experiment was realized under several temperatures up to 85 °C. The results show also influence by increasing temperature. Moisture diffusivity was obtained from moisture profiles which were measured by non-destructive method. The results were verified by inverse analysis.

The influence of moisture on moisture diffusivity is fundamental and it is possible to express it by exponential function. All results were calculated for whole moisture range. Computation of moisture diffusivity near dry state and saturated failed. It is caused by mathematical solution of chosen model.

The influence of temperature on moisture diffusivity is not too important but also obvious. The values of moisture diffusivity growing with higher temperatures. Material P 4 500 have values of moisture diffusivity higher then material P 1.8 300. Even then P 1.8 300 have more pores. It is caused because material P 1.8 300 is made as thermal insulation. Hence it is hydrofobisation to protect it from moisture spreading, which decreases thermal properties. The other material P 4 500 is made as constructional material and therefore moisture spread inside more.

The analytical expression of influence moisture and temperature on moisture diffusivity will be done in future after more measurements.

ACKNOWLEDGMENT

This research was supported by grant of Students Grant Competition, under the number SGS11/100/OHK1/2T/11.

REFERENCES

