Strong Limit Theorems for Dependent Random Variables

Libin Wu, Bainian Li,

Abstract—In this article we establish moment inequality of dependent random variables, furthermore, some theorems of strong law of large numbers and complete convergence for sequences of dependent random variables. In particular, independent and identically distributed Marcinkiewicz law of large numbers are generalized to the case of m_0-dependent sequences.

Keywords—Lacunary System, Generalized Gaussian, NA sequence, strong law of large numbers.

I. INTRODUCTION

Let $X_1, X_2, \cdots $ denote a sequence of random variables defined on a fixed probability space (Ω, F, P). The partial sums of the random variables are $S_n = \sum_{i=1}^{n} X_i$, for $n \geq 1$ and $S_0 = 0$.

Definition 1.1 (Fazekas and Klesov, 2000, p. 447) [1] A sequence of random variables $\{X_n, n \geq 1\}$ is said to have the rth $(r > 0)$ moment function of superadditive structure if there exits a non-negative function $g(i, j)$ of two arguments such that for all $b \geq 0$ and $1 \leq k < k + l$,

$$g(b, k) + g(b + k, l) \leq g(b, k + l) \quad (1)$$

$$E[S_{b,n}]^r \leq g^n(b, n), \quad n \geq 1, \text{ for some } \alpha > 1 \quad (2)$$

Definition 1.2 Let X be a real-valued random variable, we call a Locally Generalized Gaussian, if there exists $\alpha > 0$, such that

$$E(\exp(uX)|F) \leq \exp(ua^{2}/2) \quad \text{a.s.} \quad (3)$$

for any $u \in R$.

Definition 1.3 Given $p > 0$, a sequence of real-valued random variables $\{X_n, n \geq 1\}$ is called a Lacunary System or an S_p system, if there exists a positive constant K_p such that

$$E\left(\sum_{i=0}^{n} C_{i} X_{i}\right)^{p} \leq K_p\left(\sum_{i=0}^{n} C_{i}^{2}\right)^{p/2}$$

for any sequence of real constant $\{C_{i}\}$ and all $n \geq m$.

Definition 1.4 The random variables X_1, X_2, \cdots, X_n are said to be negatively associated if for every n and every pair of disjoint subsets A_1, A_2 of $\{1, 2, \cdots, n\}$

$$\text{Cov}(f_1(X_i : i \in A_1), f_2(X_j : j \in A_2)) \leq 0,$$
\[r > 1. \] Then there exists a positive constant \(C \), which does not depend on \(n \), such that
\[
E(\max_{1 \leq k \leq n} |S_k|^r) \leq C \sum_{j=1}^{n} E|X_j|^r, \quad 1 < r \leq 2, \\
E(\max_{1 \leq k \leq n} |S_k|^r) \leq C(\sum_{j=1}^{n} E|X_j|^r + \sum_{j=1}^{n} E|X_j|^r)^{r/2}, \quad r > 2.
\]
In this paper, we assume that \(C, C_1, \ldots \) are some positive constants (not necessarily always the same) independent of \(n \).

\section{Main Results}

\textbf{Theorem 2.1} Assume that \(\{X_n, n \geq 1\} \) be a Lacunary System, exists a positive constant \(K_p \) and \(p > 2 \), such that \(\left(\sup_{j} E|X_j|^p \right) < \infty \), then for every \(\delta > 0, \)
\[
\lim_{n \to \infty} \frac{S_n}{\sqrt{n} (\log n)^{1/p} (\log \log n)^{(1+\delta)/p}} = 0, \text{ a.s.} \quad (9)
\]
and for
\[
b_n = \sqrt{n} (\log n)^{1/p} (\log \log n)^{(1+\delta)/p}, \quad n \geq n_0, \\
\alpha_n = K_p p^{1/2} - K_p (p - 1)^{1/2}, \\
\beta_n = \max_{1 \leq k \leq n} b_k, \quad 0 < \delta < 1,
\]
\[
S_n/b_n = O \left(\frac{\alpha_n}{\beta_n} \right), \text{ a.s., } \lim_{n \to \infty} \frac{\alpha_n}{\beta_n} = 0. \quad (10)
\]
\textbf{Proof} From Definition 1.3, for any sequence of real constant \(\{C_i\} \),
\[
E\left(\sum_{i=b+1}^{b+n} C_i X_i \right)^p \leq K_p \left(\sum_{i=b+1}^{b+n} C_i^2 \right)^{p/2},
\]
in particular where \(C_i \equiv 1 \), we have
\[
E\left(\sum_{i=b+1}^{b+n} C_i X_i \right)^p = E|S_{bn}|^p \leq K_p n^{p/2},
\]
In Definition 1.1 take
\[
g_n = g(b, n) = K^2 p^{1/2}, \quad \alpha = p^2/2,
\]
then
\[
g(b, k) = K^2 p^{1/2}, \quad g(b + k, l) = K^2 p^{1/2},
\]
\[
g(b, k) + g(b + k, l) = K^2 p^{1/2}(k + l) \leq g(b, k + l),
\]
\[
E|S_{bn}|^p \leq K_p n^{p/2} \leq g^p(b, n), \quad n \geq 1, \quad p > 2,
\]
we know that \(\{X_n, n \geq 1\} \) has the \(p \)th moment function of supersensitive structure, and
\[
\sum_{n=n_0}^{\infty} \frac{g_n^p}{b_n^p} = \sum_{n=n_0}^{\infty} \frac{K_p n^{p/2} - (n - 1)^{p/2}}{n^{p/2}(\log n)(\log \log n)^{1+\delta}} < \infty,
\]
thus (9) follows from Lemma 1.2.

We assume that \(\alpha_n > 0 \) for infinitely many \(n \). By (8) and Lemma 1.3, we know that
\[
\sum_{n=1}^{\infty} \frac{\alpha_n}{b_n^p} < \infty,
\]
it is easy to see that \(0 < \beta_k \leq \beta_{k+1} \) for \(k \geq 1 \), and
\[
\sum_{n=1}^{\infty} \frac{\alpha_n}{\beta_n} \leq \sum_{n=1}^{\infty} \frac{\alpha_n}{\beta_n} n^{p/2} < \infty,
\]
\[
\frac{\beta_k}{b_k} \leq \max_{1 \leq i \leq n} b_i \frac{g_i^p}{b_i} + \max_{1 \leq i \leq n} b_i \frac{g_i^p}{b_i} < \infty.
\]
from (8) and
\[
\lim_{n \to \infty} \frac{\beta_n}{b_n} = 0.
\]
Eq.(7) and Theorem 1.1 of Fazekas and Klesov (2000) [1] imply that
\[
E\left(\max_{1 \leq i \leq n} \frac{S_i^p}{\beta_i^p} \right) < 4C \sum_{i=1}^{n} \frac{\alpha_i}{\beta_i^p} < 4C \sum_{i=1}^{n} \frac{\alpha_i}{\beta_i^p} < \infty,
\]
hence by monotone convergence theorem, we have
\[
E\left(\sup_{n \geq 1} \frac{S_n}{\beta_n^p} \right) \leq \lim_{n \to \infty} E\left(\max_{1 \leq i \leq n} \frac{S_i^p}{\beta_i^p} \right) \leq 4C \sum_{n=1}^{\infty} \frac{\alpha_n}{\beta_n^p} < \infty,
\]
so that
\[
\sup_{n \geq 1} \frac{S_n}{\beta_n^p} < \infty, \text{ a.s.},
\]
and
\[
0 \leq \left| \frac{S_n}{\beta_n^p} \right| \leq \frac{\beta_n}{b_n} \sup_{n \geq 1} \frac{S_n}{\beta_n^p} = O\left(\frac{\beta_n}{b_n} \right), \text{ a.s.},
\]
this completes the proof.

\textbf{Remark1}: Theorem 2.1 improve result of Ryozo,Y.(Corollary 2)[8] and from strictly stationary strong mixing sequence to \(S_t \) system.

\textbf{Theorem 2.2} Let \(\{X_n, F_n\} \) be a Locally Generalized Gaussian sequence, if \(\sup_{n} \left| \frac{X_n}{\|X_n\|} \right| = k < \infty \), then for any \(r \geq 2 \)
\[
E\left| \sum_{i=a+1}^{a+n} C_i X_i \right|^r \leq K_r \left(\sum_{i=a+1}^{a+n} C_i^2 \right)^{r/2}, \quad (11)
\]
furthermore,(9) and (10) hold.

\textbf{Proof} Let \(A_n = \sum_{i=a+1}^{a+n} C_i^2 \), \(u = x/k^2 A_n \), by lemma 1 in [5], then
\[
E(\exp(u \sum_{i=a+1}^{a+n} C_i X_i)) = E(\exp(u S_n)) \leq \exp(u^2 k^2 A_n/2).
\]
where
\[
S_n = \sum_{i=a+1}^{a+n} C_i X_i, \quad r \geq 2.
\]
by Chebyshev’s inequality, we get
\[E\left| \sum_{i=a+1}^{n+a} C_i X_i \right|^r \leq 2r \int_0^n x^{r-1} P(|S_n| > x) dx \]
\[\leq 2^{r/2} r^{r/2} \sum_{i=a+1}^{n+a} A_i^{r/2} \int_0^n x^{r/2-1} \exp(-x) dx \]
\[= K_r \left(\sum_{i=a+1}^{n+a} C_i^{r/2} \right) \]
where \(K_r = 2^{r/2} r^{r/2} \int_0^n x^{r/2-1} \exp(-x) dx \).
Therefore, Locally Generalized Gaussian sequence is a
Lacunary system, by Theorem 2.1, (9) and (10) hold.

Theorem 2.3 Let \(\{X_n, n \geq 1\} \) be a NA sequence, satisfying \(\sup_n |X_n|^p < \infty \), then for any \(0 < p < 2, \alpha p \geq 1, \alpha p/2 < \delta \leq 1, x > 0 \),
\[\sum_{n=1}^{\infty} n^{\alpha p - (1 + \delta)} P\{ |S_n| \geq x n^\alpha \} < \infty, \]
(12)
where \(S_n = \sum_{i=1}^n X_i \).

Proof From lemma 1.3, when \(C_1 = 1 \) we have
\[E\left| \sum_{i=a+1}^{n+a} X_i \right|^p \leq K_p n^{p/2}, \]
By Markov’s inequality we get
\[\sum_{n=1}^{\infty} n^{\alpha p - (1 + \delta)} P\{ |S_n| \geq x n^\alpha \} \leq \sum_{n=1}^{\infty} \frac{n^{\alpha p - 1 - \delta} E|S_n|^p}{x^{p} n^{\alpha p}} \]
\[\leq K_p x^{-\alpha p} \sum_{n=1}^{\infty} \frac{n^{\alpha p - 1 - \delta} n^{r/2}} {n^{\alpha p}} \]
\[= K_p x^{-\alpha p} \sum_{n=1}^{\infty} \frac{1}{n^{1+(r-p)/2}} < \infty. \]

Theorem 2.4 Let \(\{X_n, n \geq 1\} \) be a \(m_0 \) dependent sequence with zero mean, if \(\sup_{n} |X_n|^\alpha < \infty \), then for any \(1 \leq r < 2, \)
\[\sum_{n=1}^{\infty} n^{\alpha p - (1 + \delta)} P\{ |S_n| \geq x n^\alpha \} \leq \sum_{n=1}^{\infty} \frac{n^{\alpha p - 1 - \delta} E|S_n|^p}{x^{p} n^{\alpha p}} \]
\[\leq K_p x^{-\alpha p} \sum_{n=1}^{\infty} \frac{n^{\alpha p - 1 - \delta} n^{r/2}} {n^{\alpha p}} \]
\[= K_p x^{-\alpha p} \sum_{n=1}^{\infty} \frac{1}{n^{1+(r-p)/2}} < \infty. \]
(13)

Thus (13) follows from Lemma 1.2.

Remark 2 This result extends independent and identically distributed Marcinkiewicz Law of large numbers for \(m_0 \)-dependent sequences.

Acknowledgment

This work was supported by the Project Ministry of Education of PR China (10YIC630143) and the science Foundation of the Anhui Province (KJ2010B001,2010sk226,2011sk162).

References