A Signal Driven Adaptive Resolution Short-Time Fourier Transform

Saeed Mian Qaisar, Laurent Fesquet and Marc Renaudin

Abstract—The frequency contents of the non-stationary signals vary with time. For proper characterization of such signals, a smart time-frequency representation is necessary. Classically, the STFT (short-time Fourier transform) is employed for this purpose. Its limitation is the fixed time-frequency resolution. To overcome this drawback an enhanced STFT version is devised. It is based on the signal driven sampling scheme, which is named as the cross-level sampling. It can adapt the sampling frequency and the window function (length plus shape) by following the input signal local variations. This adaptation results into the proposed technique appealing features, which are the adaptive time-frequency resolution and the computational efficiency.

Keywords—Level Crossing Sampling, Activity Selection, Adaptive Resolution Analysis, Computational Complexity.

I. INTRODUCTION

Almost all natural signals like speech, seismic and biological signals are of non stationary nature. Moreover the man made signals like Doppler, ASK (Amplitude Shift Keying), FSK (Frequency Shift Keying) etc. also lie in the same category. The spectral contents of these signals vary with time, which is a direct consequence of the signal generation process [5].

Classical systems are based on the Nyquist signal processing architectures. They cannot sense the input signal local variations and therefore they process it at a fixed pace. Thus, in case of low activity sporadic signals like electrocardiogram, phonocardiogram, seismic signals etc. they produce a large number of useless samples without any relevant information. It causes a useless increase in the system activity and so a useless increase of the power consumption.

The power efficiency can be achieved by smartly adapting the system computational load according to the input signal local variations. In this context, a signal driven sampling scheme, which is based on “level-crossing” is employed.

The LCSS (Level Crossing Sampling Scheme) [1] adapts the sampling rate by following the input signal local characteristics [12, 16]. Hence, it drastically reduces the post processing chain activity, because it only captures the relevant information [11, 13]. In this context, the LCSS based analog to digital converters have been developed [2, 4, 17]. Algorithms for processing [3, 11, 13, 18] and analysis [8, 12, 19] of the non-uniformly spaced out in time sampled data obtained with the LCSS have also been developed.

The focus of this work is to achieve a smart time-frequency representation of the time varying signals. The idea is to adapt the time-frequency resolution and the computational load according to the input signal local variations. It is realized by smartly combining the features of both uniform and non-uniform signal processing tools.

Section II briefly reviews the non-uniform signal processing tools employed in the proposed case. Complete functionality of the proposed technique is described in Section III. Its appealing features are further demonstrated with the help of a basic example in Section IV. Section V deals with the computational complexity and the processing error. In Section VI, the proposed technique performance is evaluated for a chirp signal. Section VII finally concludes the article.

II. NON-UNIFORM SIGNAL PROCESSING TOOLS

A. LCSS (Level Crossing Sampling Scheme)

In recent years, there have been considerable interests in the LCSS, in a broad spectrum of technology and applications. In [20], authors have employed it for acquiring the non band limited signals. It has also been suggested in literature for random processes [21], band limited Gaussian random processes [22], compression [1] and for monitoring and control systems [23, 24, 25, 26]. The LCSS is also known as an event based sampling [27, 28].

In the case of LCSS, a sample is captured only when the input analog signal \(x(t) \) crosses one of the predefined threshold levels [1]. The samples are not uniformly spaced in time because they depend on \(x(t) \) variations as it is clear from Fig. 1. The non-uniformity in the sampling process reflects the signal local characteristics [12].
According to [1], the sampling instants of a non-uniformly sampled signal obtained with the LCSS are defined by Equation 1.

\[t_n = t_{n-1} + dt_n. \]

(1)

\[dt_n = t_n - t_{n-1}. \]

(2)

Where \(t_n \) is the current sampling instant, \(t_{n-1} \) is the previous one and \(dt_n \) is the time delay between the current and the previous sampling instants (cf. Equation 2).

The sampling frequencies \(f_{\text{min}} \) and \(f_{\text{max}} \) are the maximum and minimum sampling frequencies respectively. The A/D conversion process, which occurs in the LCADCs [2, 4, 17], is duel in nature. Ideally in this case samples increment in only upon resolution. It shows that the SNR of an ideal ADC depends any more on error is characterized by the SNR (Signal to Noise Ratio) [29]. This quantization at the ADC resolution [29]. This sampling instants are exactly known, whereas samples amplitudes are quantized at the timer resolution [29]. This error can be defined by Equation 5.

\[q = \frac{\Delta V_{in}}{2^M - 1}. \]

(5)

Let \(\delta \) be the AADC processing delay for one sample. Then for proper signal capturing, \(x(t) \) must satisfy the tracking condition [2], given by Expression 6.

\[\frac{dx(t)}{dt} \leq \frac{q}{\delta}. \]

(6)

In order to respect the reconstruction criterion [31] and the tracking condition [2], a band pass filter with pass-band \([f_{\text{min}}, f_{\text{max}}] \) is employed at the AADC input. This together with a given \(M \) induces the AADC maximum and minimum sampling frequencies \([11, 13]\), defined by Equations 7 and 8 respectively.

\[F_{\text{max}} = 2 f_{\text{max}} (2^M - 1) \]

(7)

\[F_{\text{min}} = 2 f_{\text{min}} (2^M - 1) \]

(8)

Where, \(f_{\text{max}} \) and \(f_{\text{min}} \) are the \(x(t) \) bandwidth and fundamental frequencies respectively. \(F_{\text{max}} \) and \(F_{\text{min}} \) are the AADC maximum and minimum sampling frequencies respectively.

C. EASA (Enhanced Activity Selection Algorithm)

The EASA is an improved version of the ASA [8]. The relevant (active) parts of the non-uniformly sampled signal obtained with the AADC are selected by the EASA. This selection process corresponds to the adaptive length rectangular windowing process.

The main difference between the ASA and the EASA is the choice of the upper bound on the selected window length. For the ASA the time length in seconds and for the EASA the number of samples is chosen as the upper bound. The EASA

\[\frac{3 P_x}{P'_x} \]

- 20.0 log \(\left(\frac{1}{T_{\text{timer}}} \right) \]

Where, \(P_x \) and \(P'_x \) are the powers of \(x(t) \) and of its derivative respectively. It shows that in this case the SNR does not depend any more on \(M \), but on \(x(t) \) characteristics and \(T_{\text{timer}} \). An improvement of 6.02 dB in the SNR can be achieved by simply halving \(T_{\text{timer}} \). Reconstruction issue of the non-uniformly sampled signal has been discussed in [27, 30, 31]. In [31], author showed that a bandlimited signal can be ideally reconstructed from its non-uniformly spaced samples, provided that the average number of samples satisfies the Nyquist criterion. In the case of LCADC, the number of samples is directly influenced by \(M \) and the signal characteristics [2, 4, 17]. Thus, for a given application an appropriate \(M \) should be chosen in order to respect the reconstruction criterion [21].
is defined as follow.

\[
\text{While} \ (dt_i \leq T_0/2 \text{ and } N^i \leq N_{\text{ref}}) \\
N^i = N^i + 1;
\]

end

Where, \(T_0 = 1/f_{\text{min}} \) is the fundamental period of \(x(t) \). \(T_0 \) and \(dt_i \) detect parts of the non-uniformly sampled signal with activity. This condition on \(dt_i \) is chosen in order to satisfy the Nyquist sampling criterion for \(f_{\text{min}} \), when sampling \(x(t) \) non-uniformly with the AADC. \(N^i \) represents the number of non-uniform samples lie in the \(j \)th selected window \(W^i \), which lie on the \(j \)th active part of the non-uniformly sampled signal. Where, \(i \) and \(j \) both belong to the set of natural numbers \(\mathbb{N} \). \(N_{\text{ref}} \) represents the upper bound on \(N^i \). The choice of \(N_{\text{ref}} \) depends on the \(x(t) \) characteristics and the system parameters.

The above described loop repeats for each selected window, which occurs during the observation length of \(x(t) \). Every time before starting the next loop, \(i \) is incremented and \(N^i \) is initialized to zero.

For proper spectral representation, the condition given by Expression 9 should be satisfied [8]. Where, \(L' \) is the length in seconds of \(W' \). In order to satisfy this condition for the worst case, which occurs for \(F_{\text{Fs,max}} \), \(N_{\text{ref}} \) is calculated for an appropriate reference window length \(L_{\text{ref}} \), \(L_{\text{ref}} \) has to satisfy the condition: \(L_{\text{ref}} \geq T_0 \). The process of calculating \(N_{\text{ref}} \) is given by Equation 10.

\[
L' \geq T_0 \\
N_{\text{ref}} = L_{\text{ref}} \cdot F_{\text{Fs,max}}
\]

The lower and the upper bounds on \(L_{\text{ref}} \) are posed respectively by \(T_0 \) and the system resources (the maximum sample frame which system can process at once). For \(N_{\text{ref}} \) (cf. Equation 10), the condition 9 holds for all selected windows except for the case when the actual length of the \(j \)th activity is less than \(T_0 \).

The EASA displays interesting features with the LCSS, which are not available in the classical case. It selects only the active parts of the non-uniformly sampled signal, obtained at the AADC output. Moreover, it correlates the length of the selected window with the input signal local characteristics.

III. PROPOSED ADAPTIVE RESOLUTION STFT

Block diagram of the proposed STFT is shown in Fig. 2. The activity selection and the local features extraction [8] are the proposed technique bases. They make to achieve the adaptive rate sampling and the adaptive resolution analysis. The approaches to realize it are detailed in the following subsections.
sampling rate of the AADC varies according to the slope of \(x(t) \) [2]. A high frequency signal part has a high slope and the AADC samples it at a higher rate and vice versa. Hence, a signal part with only low frequency components can be sampled by the AADC at a sub-Nyquist frequency of \(x(t) \). But still this signal part is locally over-sampled in time with respect to its local bandwidth [11, 13, 18]. It is valid as far as \(\Delta x(t) = AV_{on} \), because it makes the relevant signal part to cross all thresholds of the AADC. This statement is further illustrated with the results summarized in Table II. Hence, there is no danger of aliasing, when the low frequency relevant signal parts are locally over-sampled in time at overall sub-Nyquist frequencies.

Due to the resampling process, there will be an additional error. Nevertheless, prior to this transformation, one can take advantage of the inherent over-sampling of the relevant signal parts in the system [11, 13, 18]. Hence, it adds to the accuracy of the post resampling process [4]. The NNRI (nearest neighbour resampling interpolation) is employed for data resampling. It is a simple interpolation method as it employs only one non-uniform observation for each resampled observation. Thus, it is efficient in terms of the computational complexity. Moreover, it provides an unbiased estimate of the original signal variance, due to this reason it is also known as a robust interpolation method [9, 10]. The detailed reasons of inclination towards NNRI are discussed in [8, 9, 10].

B. Adaptive Shape Windowing

The window selector implements the condition given by Expression 13. The output of window selector is the window decision \(D^i \), which drives the switch state for \(W^o \) (c.f. Fig. 2).

\[
\text{if} (N^i \leq N_{ref} \text{ and } (Td^i = t^i - t_{end}^{-1}) > \frac{T_0}{2}) \]

(13)

In expression 13, \(t^i \) represents the \(i^{th} \) sampling instant of the \(p^th \) selected window and \(t_{end}^{-1} \) represents the last sampling instant of the \((i-1)^{p^th} \) selected window.

Jointly, the EASA and the window selector, provide an efficient spectral leakage reduction in the case of transient signals. Indeed, spectral leakage occurs due to the signal truncation problem, which causes to process the non integer number of cycles in the observation interval. Usually an appropriate smoothening (cosine) window function is employed to reduce the signal truncation, in the classical case. For the Please note that the references at the end of this proposed case, as long as the condition 13 is true, the leakage problem is resolved by avoiding the signal truncation [8]. As no signal truncation occurs so no cosine window is required. In this case, \(D^i \) is set to 1, which drives the switch to state l in Fig. 2. Otherwise an appropriate cosine window is employed to reduce the signal truncation problem. In this case, \(D^i \) is set to 0, which drives the switch to state \(\theta \) in Fig. 2.

C. Adaptive Resolution Analysis

The STFT is a classical tool, used for the time-frequency characterization of the time varying signals [6]. The STFT of a sampled signal \(x_n \) is determined by computing the DFT (Discrete Fourier Transform) of an \(N \) samples segment centred on \(\tau \), which describes the spectral contents of \(x_n \) around the instant \(\tau \). Where, \(N \) is defined by Equation 14.

\[
N = L . F_s
\]

(14)

In Equation 14, \(L \) is the effective length in seconds of the window function \(w_n \) and \(F_s \) is the sampling frequency. The STFT can be expressed mathematically by Equation 15.

\[
X[r, f] = \sum_{n=\tau - L/2}^{\tau + L/2} x_n . w_n . e^{-j2\pi f.t . n}
\]

(15)

In Equation 15, \(f \) is the frequency index, which is normalised with respect to \(F_c \).

\(L \) controls the STFT time and frequency resolution [6]. In the classical case, the input signal is sampled at a fixed sampling frequency \(F_s \) regardless of its local variations. Thus, a fixed \(L \) results into a fixed \(N \) (cf. Equation 14). In the case, when the spectrum of each windowed block is calculated with respect to \(\tau \) and no overlapping is performed between the consecutive blocks, the time resolution \(\Delta t \) and the frequency resolution \(\Delta f \) of the STFT can be defined by Equations 16 and 17 respectively.

\[
\Delta t = \frac{L}{N}
\]

(16)

\[
\Delta f = \frac{F_s}{N}
\]

(17)

Equation 17 shows that for a fixed \(F_s \), \(\Delta f \) can be increased by increasing \(N \). But increasing \(N \) requires increasing \(L \) which will reduce \(\Delta t \) (cf. Equation 16). Thus, a larger \(L \) provides better \(\Delta f \) but poor \(\Delta t \) and vice versa. This conflict between \(\Delta f \) and \(\Delta t \) shows the limitation of the STFT, which is the reason for the creation of the MRA (multi resolution analysis) techniques [7, 14, 32]. The MRA techniques provide a good frequency but a poor time resolution for the low-frequency events and a good time but a poor frequency resolution for the high-frequency events. It is the type of analysis, best suited for most of the real life signals [7].

In this article, the fixed resolution dilemma is resolved to a certain extent by revising the STFT. The proposed STFT is a smart alternative of the MRA techniques. It performs adaptive time-frequency resolution analysis, which is not attainable with the classical STFT. It is achieved by adapting the \(F_s \) and \(L \) according to the local variations of \(x(t) \). Thus, the time resolution \(\Delta t \) and the frequency resolution \(\Delta f \) of the proposed STFT can be specific for \(W \) and are defined by Equations 18
and 19 respectively.

\[\Delta t' = L' \]
\[\Delta f' = \frac{F_{rs'}}{N_{ri}} \]

(18) \hspace{1cm} (19)

Because of this adaptive time-frequency resolution, the proposed STFT will be named as the ARSTFT (adaptive resolution STFT), throughout the following parts of this article. This adaptive nature of the ARSTFT also leads towards a drastic computational gain, compared to the classical one. It is achieved firstly by avoiding the unnecessary samples to process and secondly by avoiding the use of the cosine window function as far as the condition 13 is true. The ARSTFT is defined by Equation 20.

\[X[r', f'] = \sum_{n=-\infty}^{\infty} [\text{Re sample} \left(x[n], t_n \right)] W_{n} e^{-j2\pi f' n} \]

\[= \sum_{n=-\infty}^{\infty} \left[\text{Re sample} \left(x[n], t_n \right) \right] W_{n} e^{-j2\pi f' n} \]

(20)

Where, \(r' \) and \(f' \) are the central time and the frequency index of the \(i \)th selected window respectively. \(f' \) is normalised with respect to \(F_{rs'} \), \(n \) is the index of the resampled data points lie in \(W \). The notation \(W_{n} \) represents that the window function length \(L' \) and shape (rectangle or cosine) can be adapted for \(W \).

IV. BASIC EXAMPLE

In order to illustrate the ARSTFT an input signal \(x(t) \), shown on the left part of Fig. 3 is employed. Its total duration is 30 seconds and it consists of four active parts. The summary of \(x(t) \) activities is given in Table I.

![Fig. 3 Input signal (left) and the selected signal (right)](image)

TABLE I

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>SIGNAL COMPONENT</th>
<th>LENGTH (SEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>0.9.sin(2.pi.50.t)</td>
<td>5</td>
</tr>
<tr>
<td>2nd</td>
<td>0.9.sin(2.pi.50.t)</td>
<td>0.4</td>
</tr>
<tr>
<td>3rd</td>
<td>0.9.sin(2.pi.500.t)</td>
<td>0.5</td>
</tr>
<tr>
<td>4th</td>
<td>0.9.sin(2.pi.500.t)</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Table I shows that \(x(t) \) is band limited between 50 to 500 Hz. In this example \(x(t) \) is sampled by employing a 3-bit resolution AADC. Thus, \(F_{s_{max}} \) and \(F_{s_{min}} \) become 7 kHz and 0.7 kHz respectively (cf. Equations 7, 8). \(F_{ref} = 1.25 \text{ kHz} \) is chosen, which satisfies the criteria given in Section II-C. \(\Delta f_{wo} = 1.8 v \) is chosen, thus \(q \) becomes 0.2571v in this case (cf. Equation 5).

The selected signal obtained with the EASA is shown on the right part of Fig. 3. By following the criteria given in Section II-C, \(N_{ref} = 4096 \) is chosen, which leads to 6 selected windows. First three selected windows correspond to the first three activities and the remaining corresponds to the fourth activity. The last three selected windows are not distinguishable on the right part of Fig. 3, because they lie consecutively on the fourth activity. The parameters of each selected window are summarised in Table II.

TABLE II

<table>
<thead>
<tr>
<th>SELECTED WINDOW</th>
<th>(L') (SEC)</th>
<th>(F_{s'}) (kHz)</th>
<th>(N')</th>
<th>(F_{rs'}) (kHz)</th>
<th>(F_{rs}) (kHz)</th>
<th>(N_{ri})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>4.99</td>
<td>0.7</td>
<td>3500</td>
<td>1.25</td>
<td>0.7</td>
<td>3500</td>
</tr>
<tr>
<td>2nd</td>
<td>0.39</td>
<td>0.7</td>
<td>280</td>
<td>1.25</td>
<td>0.7</td>
<td>280</td>
</tr>
<tr>
<td>3rd</td>
<td>0.49</td>
<td>2.8</td>
<td>1400</td>
<td>1.25</td>
<td>1.25</td>
<td>625</td>
</tr>
<tr>
<td>4th</td>
<td>0.58</td>
<td>7.0</td>
<td>4096</td>
<td>1.25</td>
<td>1.25</td>
<td>731</td>
</tr>
<tr>
<td>5th</td>
<td>0.58</td>
<td>7.0</td>
<td>4096</td>
<td>1.25</td>
<td>1.25</td>
<td>731</td>
</tr>
<tr>
<td>6th</td>
<td>0.43</td>
<td>7.0</td>
<td>3005</td>
<td>1.25</td>
<td>1.25</td>
<td>536</td>
</tr>
</tbody>
</table>

Table II exhibits the interesting features of the ARSTFT, which are achieved due to the smart combination of the non-uniform and the uniform signal processing tools. Fsi represents the sampling frequency adaptation by following the local variations of \(x(t) \). Ni shows that the relevant signal parts are locally oversampled in time with respect to their local bandwidths. Frsi shows the adaptation of the resampling frequency for Wi. It further adds to the ARSTFT computational gain, by avoiding the unnecessary interpolations during the resampling process. Nri shows that how the adjustment of Frsi avoids the processing of unnecessary samples during the spectral computation (cf. Equation 20). Li exhibits the EASA dynamic feature, which is to correlate the window function length with the local variations of \(x(t) \). Adaptation of Li, Frsi and Nri leads to the adaptive time-frequency resolution of the ARSTFT, which is clear from the values of \(\Delta t \) and \(\Delta f \) in Table III.

TABLE III

<table>
<thead>
<tr>
<th>WINDOW</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta t) (Sec)</td>
<td>4.99</td>
<td>0.39</td>
<td>0.49</td>
<td>0.58</td>
<td>0.58</td>
<td>0.43</td>
</tr>
<tr>
<td>(\Delta f) (Hz)</td>
<td>2.5</td>
<td>2.0</td>
<td>1.71</td>
<td>1.71</td>
<td>2.33</td>
<td></td>
</tr>
</tbody>
</table>

Table III demonstrates that ARSTFT adapts its time-frequency resolution by following the local variations of \(x(t) \). It provides a good frequency but a poor time resolution for the low frequency parts of \(x(t) \) and vice versa. This type of analysis is best suited for most of the real life signals [7]. The spectrum of each selected window is computed and plotted with respect to ti on Fig. 4.

Fig. 4 shows the fundamental and the periodic spectrum peaks of each selected window. As \(F_{s_{1}} \) and \(F_{s_{2}} \) both remain less than \(F_{ref} \) so \(F_{rs_{1}} = F_{s_{1}} \) and \(F_{rs_{2}} = F_{s_{2}} \) are chosen. Contrary, \(F_{s_{3}} \) to \(F_{s_{6}} \) all become greater than \(F_{ref} \) thus \(F_{rs_{3}} \) to
Fr\(_s\)\(_i\), all are chosen equal to \(F_{\text{ref}}\) (cf. Table II). The adaptation of \(F_{\text{ref}}\) for \(W\) can be visualised on Fig. 4. In this case, for \(W\) the spectrum periodic frequency \(f_s\) is equal to \(Fr_s\).

![Fig. 4 The ARSTFT of the selected windows](image)

The ARSTFT also adapts the window shape (rectangle or cosine), for \(W\). The condition 13 remains true for the first three selected windows, thus \(D\) is set to 1. As no signal truncation occurs so no cosine window is required in this case. On the other hand, the number of samples for the fourth activity is 11200. Therefore, \(N_{\text{ref}} = 4096\) leads to the three selected windows for the fourth activity time span. The condition 13 becomes false, thus \(D\) is set to 0. As signal truncation occurs, so suitable length cosine (Hanning) windows are employed to reduce this effect.

In the classical case, if \(F_s = F_{\text{ref}}\) is chosen, in order to satisfy the Nyquist sampling criterion for \(x(t)\). Then the whole signal will be sampled at 1.25 kHz, regardless of its local variations. Moreover, the windowing process is not able to select only the active parts of the sampled signal. In addition, \(L\) remains static and is not able to adapt with \(x(t)\) local variations. This static nature makes the classical system to process unnecessary samples and so causes an increased computational activity than the proposed one. For this studied example, the fixed \(N_{\text{ref}}\) = 4096, will lead to nine fixed \(L\) = 3.3 second windows, for the total \(x(t)\) time span of 30 seconds. It leads to the fixed \(\Delta t = 3.3\) seconds and \(\Delta f = 0.31\) Hz for all nine windows (cf. Equations 16 and 17).

V. PERFORMANCE EVALUATION

A. Computational Complexity

This section compares the computational complexity of the ARSTFT with the classical STFT. The complexity evaluation is made by considering the number of operations executed to perform the algorithm.

In the classical case, the sampling frequency and the window function length plus shape remains time invariant. If \(N\) is the number of samples lie in the window then the windowing operation will perform \(N\) multiplications between \(w_n\) and \(x_n\) (cf. Equation 15). The spectrum of the windowed data is obtained by computing its DFT. A complex term is involved in the DFT computation. The DFT complexity is calculated by taking the real and the imaginary parts separately. Thus, DFT performs \(2N\) multiplications and \(2(N-1)\) additions per output frequency. For larger values of \(N\), \(2(N-1) = 2N\). Thus, the DFT computational complexity for \(N\) output frequencies becomes \(2N^2\) additions and \(2N^2\) multiplications. The combine computational complexity \(C_1\) of the STFT is given by Equation 21.

\[
C_1 = A \left(N + 2(N^2) + 2(N^2) \right) \quad \text{Additions and Multiplications} \quad \text{(21)}
\]

For the proposed ARSTFT, \(F_{s,i}\) and \(w_{s,i}\) are not fixed and are adapted for \(W\), according to the local variations of \(x(t)\). In comparison to the classical case, this approach locally requires some extra operations for each selected window. The EASA performs \(2N^2\) comparisons and \(N^2\) increments for \(W\) (cf. Section II-C). The choice of \(F_{s, i}\) and window shape, require three comparisons. The selected signal is resampled before computing its DFT. The NNRI is employed for the resampling purpose. The NNRI only requires a comparison operation for each resampled observation. Therefore, the resampler performs \(N^2\) comparisons. If \(D = 0\), then a cosine window function is applied on the resampled data, which performs \(N^2\) multiplications (cf. Fig. 2). The DFT performs \(2(N^2)\) additions and \(2(N^2)\) multiplications for \(W\). The combine computational complexity \(C_2\) of the ARSTFT is given by Equation 22.

\[
C_2 = \sum_{i=1}^{A} \left(N_i + 2(N_i^2) + 3 + N_{r,i} + 2(N_{r,i}^2) \right) \quad \text{Additions} \quad \text{(22)}
\]

In Equation 21, A is the total number of windows, occurs for the observation length of \(x(t)\). In Equation 22, \(i = 1, 2, \ldots, K\) represents the index of the selected window. \(\alpha\) is a multiplying factor, its value is 1 if \(D = 0\) and 0 if \(D = 1\). From \(C_1\) and \(C_2\) it is clear that there are uncommon operations between both techniques. In order to make them approximately comparable the following assumption is made.

- An increment or a comparison has the same processing cost as that of an addition.

By following this assumption, comparisons and increments are merged into additions count, during the complexity evaluation process. The computational comparison of the ARSTFT with the classical one is made for results of the basic example. The gains are summarized in Table IV.

<table>
<thead>
<tr>
<th>TABLE IV</th>
<th>SUMMARY OF THE COMPUTATIONAL GAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Span (Sec)</td>
<td>Gain in Additions</td>
</tr>
<tr>
<td>1st activity</td>
<td>2.737</td>
</tr>
<tr>
<td>2nd activity</td>
<td>212.473</td>
</tr>
<tr>
<td>3rd activity</td>
<td>42.686</td>
</tr>
<tr>
<td>4th activity</td>
<td>12.213</td>
</tr>
</tbody>
</table>

Table IV shows the gain in additions and multiplications of
the ARSTFT over the classical STFT for each \(x(t) \) activity. It demonstrates that the ARSTFT leads to a significant reduction of the total number of operations as compare to the classical STFT. This reduction in operations is achieved by adapting \(F \sigma^r, F_r \sigma^r \) and \(w \sigma^r \) according to the local variations of \(x(t) \).

B. Resampling Error

In the proposed techniques the resampling is performed, which changes the properties of the resampled signal with respect to the original one. This error mainly contains of two effects. The time-amplitude pairs uncertainties which occur due to the AADC finite timer and threshold levels precision. The interpolation error which occurs during the uniform resampling process, considering their combine effect, the Mean resampling Error for \(W \) can be computed by employing the following Equation.

\[
MRE^r = \frac{1}{N_{rp}} \sum_{n=1}^{N_r} | x_{ro} - x_r^n |
\]
\[(23) \]

Where, \(x_{ro} \) is the \(n^{th} \) resampled observation, interpolated with respect to the time instant \(t_r^n \). \(x_r^n \) is the original sample value which should be obtained by sampling \(x(t) \) at \(t_r^n \). In the studied example discussed in Section IV, \(x(t) \) is analytically known, thus it is possible to compute its original samples values at any given time instant. It allows to compute the resampling error introduced by the proposed technique by employing Equation 23.

The mean interpolation error is calculated for each selected window. The results are summarized in Table V.

<table>
<thead>
<tr>
<th>Table V</th>
<th>MEAN INTERPOLATION ERROR FOR EACH SELECTED WINDOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window</td>
<td>MEAN (dB)</td>
</tr>
<tr>
<td>1st</td>
<td>-26.3</td>
</tr>
<tr>
<td>2nd</td>
<td>-26.2</td>
</tr>
<tr>
<td>3rd</td>
<td>-25.9</td>
</tr>
<tr>
<td>4th</td>
<td>-24.1</td>
</tr>
<tr>
<td>5th</td>
<td>-24.1</td>
</tr>
<tr>
<td>6th</td>
<td>-23.8</td>
</tr>
</tbody>
</table>

Table V shows that the error introduced by the resampling process is quite a minor one. In the case of high precision applications, the resampling error can be further reduced by increasing the AADC resolution \(M \) and the interpolation order \([4, 11, 15]\). Thus, an increased accuracy can be achieved at the cost of an increased computational load. Therefore, by making a suitable compromise between the accuracy level and the computational load, an appropriate solution can be devised for a given application.

VI. CASE STUDY

The instantaneous frequency of a chirp signal varies with time. The chirp-like signals are common in real life applications, like sonar and radar systems, spread spectrum communications, acoustic sounds etc. Being a common example of various time varying systems, it is employed to study the proposed technique performance.

The input chirp signal \(x(t) \) is bandlimited between 10 Hz to 500 Hz and its total duration is 8 sec. In the first quarter of time span, its frequency rises from 10 Hz to 500 Hz and contrary in the second quarter, it falls from 500 Hz to 10 Hz. The same pattern is repeated onwards. \(x(t) \) frequency pattern can be visualized from Fig. 5.

A 3-bit resolution AADC is used for digitizing \(x(t) \) and therefore, we have \(F_{\text{min}} = 140 \) Hz and \(F_{\text{max}} = 7000 \) Hz. The amplitude range is always set to \(\Delta V_{\text{in}} = 1.8 \) V, which leads to a quantum \(q = 0.257 \) V. The amplitude of \(x(t) \) is normalized to 0.9 V in order to avoid the AADC saturation.

With the given specifications, 10858 samples are obtained at the AADC output. In order to apply EASA, \(N_{\text{ref}} = 1024 \) is chosen, which satisfies the criteria given in Section II-C. For the chosen \(N_{\text{ref}} \), EASA delivers 11 selected windows. The selected windows parameters are summarized in Table VI.

<table>
<thead>
<tr>
<th>Table VI</th>
<th>SUMMARY OF THE SELECTED WINDOWS PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window</td>
<td>(L^i)</td>
</tr>
<tr>
<td>1st</td>
<td>0.93</td>
</tr>
<tr>
<td>2nd</td>
<td>0.32</td>
</tr>
<tr>
<td>3rd</td>
<td>0.24</td>
</tr>
<tr>
<td>4th</td>
<td>0.20</td>
</tr>
<tr>
<td>5th</td>
<td>0.18</td>
</tr>
<tr>
<td>6th</td>
<td>0.16</td>
</tr>
<tr>
<td>7th</td>
<td>0.15</td>
</tr>
<tr>
<td>8th</td>
<td>0.31</td>
</tr>
<tr>
<td>9th</td>
<td>0.38</td>
</tr>
<tr>
<td>10th</td>
<td>0.53</td>
</tr>
<tr>
<td>11th</td>
<td>0.77</td>
</tr>
</tbody>
</table>

The time-frequency resolution values for the ARSTFT are calculated by employing Equations 18 and 19. The results are summarized in Table VII.

Tables VI and VII combine to demonstrate the ARSTFT signal driven nature. They show the adaptation of its sampling frequency and time-frequency resolution by following the input signal local variations. Contrary in the classical STFT, the sampling frequency and the window function remain time invariant. If the sampling is performed at \(F_{\text{s}} = 1250 \) Hz, then for the 1024 samples 10 windows will be obtained, among them each one will be of 0.82 sec length. It will lead towards its fixed \(\Delta t = 0.82 \) sec and \(\Delta f = 1.2 \) Hz values (cf. Equations 16 and 17).
The resampling error is calculated by employing Equation 23, which is bounded by -23.8 dB for all selected windows. It shows the proposed system accuracy. Further resampling accuracy can be achieved by increasing the AADC resolution and the interpolation order [4, 11, 15].

The computational gain of the ARSTFT over the classical one is also calculated by employing Equations 21 and 22. It shows 3.8 and 3.9 times gains in additions and multiplications respectively. It confirms the out performance of the ARSTFT over the classical one, even in the case of a continuously varying chirp signal. It is achieved due to the joint benefits of the AADC, the ASA and the resampling, as they make to adapt the sampling frequency and the window function (length plus shape) according to the signal local characteristics.

VII. CONCLUSION

A new tool for the adaptive resolution time-frequency analysis has been proposed. The ARSTFT is especially well suited for the low activity sporadic signals. It is shown that Fsi and Li change by following the x(t) local variations. Criteria to choose the appropriate Fref and Nref are developed. A complete methodology of choosing Fref and wni for the ith selected window has been demonstrated. It is shown that the ARSTFT adapts its time-frequency resolution by following the local variations of x(t).

The resampling error is calculated. It is shown that the errors made for the studied cases are minor ones. Moreover, a higher accuracy can be achieved by increasing the AADC resolution and the interpolation order. Thus, an accuracy improvement can be achieved at the cost of an increased computational load.

The ARSTFT outperforms the STFT. The first advantage of the ARSTFT over the STFT is the adaptive time-frequency resolution and the second one is the computational gain. These smart features of the ARSTFT are achieved due to the joint benefits of the AADC, the EASA and the resampling, as they enable to adapt Fx, Fsx, N, N' and w by exploiting the local variations of x(t).

The employment of fast algorithms in place of the DFT for the spectrum computation is in progress. It will add up to the computational gain of the ARSTFT.

The ARSTFT application for the real life signals is a prospect. Moreover, performance comparison of the ARSTFT with the MRA techniques in terms of computational complexity and quality is an area of future research.

REFERENCES

<table>
<thead>
<tr>
<th>Window</th>
<th>Δf</th>
<th>Δf’</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>0.93</td>
<td>1.1</td>
</tr>
<tr>
<td>2nd</td>
<td>0.32</td>
<td>3.1</td>
</tr>
<tr>
<td>3rd</td>
<td>0.24</td>
<td>4.2</td>
</tr>
<tr>
<td>4th</td>
<td>0.20</td>
<td>5.0</td>
</tr>
<tr>
<td>5th</td>
<td>0.18</td>
<td>5.5</td>
</tr>
<tr>
<td>6th</td>
<td>0.16</td>
<td>6.3</td>
</tr>
<tr>
<td>7th</td>
<td>0.15</td>
<td>6.6</td>
</tr>
<tr>
<td>8th</td>
<td>0.31</td>
<td>3.5</td>
</tr>
<tr>
<td>9th</td>
<td>0.38</td>
<td>2.6</td>
</tr>
<tr>
<td>10th</td>
<td>0.53</td>
<td>1.8</td>
</tr>
<tr>
<td>11th</td>
<td>0.77</td>
<td>1.0</td>
</tr>
</tbody>
</table>