Cost and Profit Analysis of Markovian Queuing System with Two Priority Classes: A Computational Approach

S. S. Mishra and D. K. Yadav

Abstract—This paper focuses on cost and profit analysis of single-server Markovian queuing system with two priority classes. This paper, functions of total expected cost, revenue and profit of the system are constructed and subjected to optimization with respect to its service rates of lower and higher priority classes. A computing algorithm has been developed on the basis of fast converging numerical method to solve the system of non-linear equations formed out of the mathematical analysis. A novel performance measure of cost and profit analysis in view of its economic interpretation for the system with priority classes is attempted to discuss in this paper. On the basis of computed tables observations are also drawn to enlighten the variational-effect of the model on the parameters involved therein.

Keywords—Cost and Profit, Computing, Expected Revenue, Priority classes.

I. INTRODUCTION

Analysis of priority preemptive resume has taken a mature place in queuing investigations. It is studied under controlling of queuing discipline, where the discipline FCFS may be not followed in certain situations and one may serve in accordance with a priority scheme than others. Thus, high-priority customers preempt over low-priority customers for providing service in the system.

Service priority is one of the main criteria which is used by various companies to allocate limited production capacity among customers with different necessities and willingness. Hence, notion of priority queuing has many important applications in commercial information systems, production systems, networking, computer systems and in military management.

Another very practical application of priority based queue may be seen in case of hospitalization of patient in a hospital. If emergency patients come to admit, admission of a general patient is resumed and given a low priority than emergency patient. Thus, such systems are often encountered in practice, particularly in service-oriented operations.

Such queuing models under preemptive resume priority have been studied by many researchers so far. Reference [16] analyzed an exponential single server priority queue with two classes of customers and find out recursive formulae for steady state distributions using theory of matrix-geometric invariant probability vectors, as in [18]. It also studied the problem of preemptive queuing system with two priorities classes whereas [3] analyzed the same with time-dependent approach. Also, various authors presented their works regarding various aspects of priority queuing systems such as [20], [5], [11]. Here, it assumed a cut off priority queue discipline and derived several results of performance measures, as in [15]. Further, it dealt with an approximate analysis for heterogeneous multiserver systems with priority jobs, as in [27]. Moreover, a two-class single server preemptive priority queue is analyzed with balking assuming Poisson arrival and exponential service time, vide [26]. Again, it discussed a two-class priority queuing system with state dependent arrivals and computed the average equilibrium queue length for both classes, as in [6].

Moreover, it considered a multi-class priority queues with no preemptive services controlled by an exponential time and multiple vacations, vide [28]. Again, [25] discussed about a dynamic priority queue. They provided an algorithmic analysis with a single server and two independent Poisson streams of customers with general service time distributions. A performance analysis of a discrete-time priority queuing system with correlated arrivals is presented, as in [17]. They also demonstrated the impact of the correlated arrival process in the considered system. Several other researchers such as [10], [9], [2] have made their important contributions in the analysis of various aspect of priority queuing systems.

In this series of investigation, very recently [1] presented the analysis of M/M/1 queuing system with two priority classes; where first class customers are served under FCFS preemptive resume discipline having finite room of capacity and of high priority. The second class customers have infinite waiting space and of low priority. Service of low-priority customers interrupted due to entrance of high-priority customers in the system. Author also derived expected queue lengths of customers of both classes.

Cost and profit analysis is an important aspect of queuing system that leads to the economic interpretation of the system, which is useful in the application of real-life situations arising out of industrial and technical situations. In the literature, we observe that most of investigations related to queuing theory are devoted to analyze priority queuing system, but no more attempts have been made to discuss about cost and profit analysis of priority queuing models whereas fact is that without analyzing cost and profit structure of the system, we are not sufficient to critically examine the effect of prioritization on the system.

We also consult some of interesting researches related to cost analysis of queuing systems, vide for example [8], [7], [19], [13], [31], [21], [22], [29], [14], and [23]. Further, as in [30] it discussed the profit analysis of M/Er/1 machine repair problem with a non reliable service station. Recently, [25]...
developed a computational approach to profit optimization of a loss-queueing system. The cost analyses of machine interference model by applying an algorithmic approach are also discussed as in [24], [26].

Related literature revealed that [1] made no attempt to consider an economic interpretation of the queueing model with priority classes. With this motivation in mind, in this paper, we propose to investigate the cost and profit analysis of a single server Markovian queueing system with two priority classes as a novel performance measure of the system with priority classes. First, we define total expected cost (TEC) of the system with both priority classes and subject it to optimize with respect to service rates of the classes. Consequently, we find out the optimal service rates for high and low priority classes and total optimal cost (TOC) of the system with respect to most efficient service of the system. Further, profit analysis of the system is carried out and total expected profit (TEP) of the system is also evaluated. In order to compute the total optimal cost and total expected profit of the queueing system, a system of non-linear equations is constructed and its computing algorithm has been developed based on a fast converging Newton’s method for solving the above system (vide [4], [12]). We prefer this technique for it requires least computing time and lesser memory space as compared to other methods (computer program is developed in C++). Numerical demonstration with its observations based on tables and graphs have also been added to gain a significant insight into the problem.

The paper has been organized in various important sections such as introduction, notations, description of the model, cost analysis of the system, algorithm for computation, profit analysis of the system, observations, conclusion and graphics.

II. NOTATIONS

There are following notations and their descriptions used in the analysis of this model:

- $\lambda_1$ = arrival rate of high-priority class.
- $\lambda_2$ = arrival rate of low-priority class.
- $\mu_1$ = service rate of high-priority class.
- $\mu_2$ = service rate of low-priority class.
- $\rho_1$ = traffic intensity relative to high-priority class.
- $\rho_2$ = traffic intensity relative to low-priority class.
- $L_{H}$ = expected queue length of high-priority class.
- $L_{L}$ = expected queue length of low-priority class.
- $C_1$ = cost per service per unit time associated with high-priority class.
- $C_2$ = cost per service per unit time associated with low-priority class.
- $C_b$ = holding cost per customer per unit time of high-priority class.
- $C_l$ = holding cost per customer per unit time of low-priority class.
- $T(C)$ = total expected cost (TEC) of the system.
- $R$ = earned revenue for providing service per customer.
- $T(P_H)$ = total expected profit of high-priority class customers.
- $T(P_L)$ = total expected profit of low-priority class customers.
- $T(P_S)$ = total expected profit of the system.

III. DESCRIPTION OF THE SYSTEM AND ITS COST ANALYSIS

Here, it is considered a single server queueing system with Poisson arrival and exponential service pattern having two classes of customers. First class has high priority and second class has low priority for getting services. Assume that service discipline within each class is as FCFS and priority system is preemptive resumed that means during the service of a low-priority customer, if a high-priority customer enters the system, the service of a low-priority customer is interrupted, and will be resumed again when there is no high-priority customer in the he established the expected queue length for high and low priority classes as following:

\[ L_H = \frac{\rho_1 (1 - (N + 1)\rho_1^N + N\rho_1^{N+1})}{(1 - \rho_1)(1 - \rho_1^{N+1})} \]

The number of the first class customer is restricted to a finite number $N$ including the one being served, if any, and the number of the second class customers is infinite also suppose that $\lambda_1$ and $\lambda_2$ are the arrival rates for two classes and let $\mu_1$ and $\mu_2$ be the service rates for two classes in the system. Thus, traffic intensities are given as $\rho_1 = \lambda_1 / \mu_1$ and $\rho_2 = \lambda_2 / \mu_2$. Thus, [1] discussed the system with steady state probabilities and find out the marginal distributions of both classes. Further, $L_L$ (mean queue length of low-priority class)

\[ L_L = \frac{\rho_2 (1 - (N + 1)\rho_2^N + N\rho_2^{N+1})}{(1 - \rho_2)(1 - \rho_2^{N+1})} \]

This implies that

\[ L_H = \frac{\rho_1 (1 - (N + 1)\rho_1^N + N\rho_1^{N+1})}{(1 - \rho_1)(1 - \rho_1^{N+1})} \]

\[ L_L = \frac{\rho_2 (1 - (N + 1)\rho_2^N + N\rho_2^{N+1})}{(1 - \rho_2)(1 - \rho_2^{N+1})} \]

We can further write the above expressions as

\[ L_H = \frac{\rho_1 (1 - (N + 1)\rho_1^N + N\rho_1^{N+1})}{(1 - \rho_1)(1 - \rho_1^{N+1})} \]

\[ L_L = \frac{\rho_2 (1 - (N + 1)\rho_2^N + N\rho_2^{N+1})}{(1 - \rho_2)(1 - \rho_2^{N+1})} \]

where

\[ \alpha = \rho_1 = (N + 1)\rho_1^N + N\rho_1^{N+1} \]

\[ \beta = 1 - \rho_1^N + \rho_1^{N+1} \]

We can also determine

\[ L_L = \frac{\rho_2 (1 - (N + 1)\rho_2^N + N\rho_2^{N+1})}{(1 - \rho_2)(1 - \rho_2^{N+1})} \]

which can be expressed as

\[ L_L = \frac{\theta \lambda_2 \phi}{\varphi} \frac{1}{\mu_2} \]

where,
Further, in view of equation (4), we have the following expressions:

\[ \frac{\partial}{\partial \mu_1} (\theta_i) = \frac{1}{\mu_1} \left( N+1 \right) \left( \rho_i \right)^{N-1} \rho_i = \theta_i \]

\[ \frac{\partial}{\partial \mu_2} (\theta_i) = \frac{1}{\mu_2} \left( N+1 \right) \left( \rho_i \right)^{N-1} \rho_i = \theta_i \]

Now, the total expected cost of the system is defined as

\[ T(C) = C_1 \mu_1 + C_2 \mu_2 + C_3 \left( \frac{\alpha}{\beta} + C_1 \left( \frac{\theta_i}{\mu_1} \right) + C_2 \left( \frac{\theta_i}{\mu_2} \right) \right) \]

Further, from equations (2), (4), and (4), we get the following expressions:

\[ \frac{\partial}{\partial \mu_1} = \left( \frac{\alpha}{\mu_1} \right) + \frac{C_1}{C_1} \left( \frac{\theta_i}{\mu_1} \right) + \frac{C_2}{C_2} \left( \frac{\theta_i}{\mu_2} \right) \]

\[ \frac{\partial}{\partial \mu_2} = \left( \frac{\alpha}{\mu_2} \right) + \frac{C_1}{C_1} \left( \frac{\theta_i}{\mu_1} \right) + \frac{C_2}{C_2} \left( \frac{\theta_i}{\mu_2} \right) \]

Now differentiation of equation (5) with respect to \( \mu_1 \) and \( \mu_2 \) gives

\[ \frac{\partial}{\partial \mu_1} (\theta_i) = \frac{1}{\mu_1} \left( N+1 \right) \left( \rho_i \right)^{N-1} \rho_i = \theta_i \]

\[ \frac{\partial}{\partial \mu_2} (\theta_i) = \frac{1}{\mu_2} \left( N+1 \right) \left( \rho_i \right)^{N-1} \rho_i = \theta_i \]

For optimal values of \( \mu_1 \) and \( \mu_2 \), we have

\[ C_1 + C_2 \left( \frac{\theta_i}{\mu_1} \right) + \frac{\theta_i}{\mu_2} \left( \frac{\theta_i}{\mu_2} \right) = 0 \]

This can easily be expressed as

\[ U(\mu_1, \mu_2) = 0 \]

This is also rewritten as

\[ V(\mu_1, \mu_2) = 0 \]

Here, equations (9) and (10) construct a system of nonlinear equations which can be solved for \( \mu_1 \) and \( \mu_2 \) by developing a computer algorithm and using computer programming in C++. The values of \( \mu_1 \) and \( \mu_2 \) obtained in such a way will be optimal. These optimal values of \( \mu_1 \) and \( \mu_2 \) after substituting in the expression of total expected cost, will give us total optimal cost of the system. For the solution of above nonlinear system following expressions are required, therefore from equations (6) and (7), we have

\[ \frac{\partial}{\partial \mu_1} \left( \frac{\theta_i}{\mu_1} \right) = \frac{\partial}{\partial \mu_1} \left( \frac{\theta_i}{\mu_2} \right) \]

\[ \frac{\partial}{\partial \mu_2} \left( \frac{\theta_i}{\mu_1} \right) = \frac{\partial}{\partial \mu_2} \left( \frac{\theta_i}{\mu_2} \right) \]

Also, the values of \( \mu_1 \) and \( \mu_2 \) obtained in such a way will be optimal. These optimal values of \( \mu_1 \) and \( \mu_2 \) after substituting in the computer algorithm and using computer programming in C++. The values of \( \mu_1 \) and \( \mu_2 \) obtained in such a way will be optimal. These optimal values of \( \mu_1 \) and \( \mu_2 \) after substituting in the expression of total expected cost, will give us total optimal cost of the system. For the solution of above nonlinear system following expressions are required, therefore from equations (6) and (7), we have

\[ \frac{\partial}{\partial \mu_1} \left( \frac{\theta_i}{\mu_1} \right) = \frac{\partial}{\partial \mu_1} \left( \frac{\theta_i}{\mu_2} \right) \]

\[ \frac{\partial}{\partial \mu_2} \left( \frac{\theta_i}{\mu_1} \right) = \frac{\partial}{\partial \mu_2} \left( \frac{\theta_i}{\mu_2} \right) \]
According to Newton’s method, for the total optimum cost, we obtain

\[
\begin{align*}
&\frac{-\lambda_2 H_{12}}{\mu_1} C_1 \left( \frac{\psi_1}{\beta_1} - \frac{\psi_0}{\beta_0} \right) - \\
&\frac{-\lambda_2 H_{12}}{\mu_2} C_1 \left( \frac{\psi_1}{\beta_1} + \frac{\psi_0}{\beta_0} \right) + C_1 \left( \frac{2\lambda_2}{\mu_1} - \frac{\psi_2}{\beta_2} \right) - C_1 \left( \frac{2\lambda_2}{\mu_2} - \frac{\psi_2}{\beta_2} \right) + C_1 \left( \frac{2\lambda_2}{\mu_1} - \frac{\psi_2}{\beta_2} \right) - C_1 \left( \frac{2\lambda_2}{\mu_2} - \frac{\psi_2}{\beta_2} \right) - C_1 \left( \frac{2\lambda_2}{\mu_1} - \frac{\psi_2}{\beta_2} \right) - C_1 \left( \frac{2\lambda_2}{\mu_2} - \frac{\psi_2}{\beta_2} \right) - C_1 \left( \frac{2\lambda_2}{\mu_1} - \frac{\psi_2}{\beta_2} \right)
\end{align*}
\]

(14)

According to Newton’s method, for the total optimum cost, we obtain

\[
\begin{align*}
&\left( \mu_{1(k+1)} \right) = \left( \mu_{1(k)} \right) - \\
&\left( \begin{array}{c}
\frac{\partial^2 U}{\partial t_1^2} \\
\frac{\partial^2 U}{\partial t_1 \partial t_2} \\
\frac{\partial^2 U}{\partial t_2^2}
\end{array} \right) \left( \begin{array}{c}
\frac{\partial U}{\partial t_1} \\
\frac{\partial U}{\partial t_2}
\end{array} \right)
\end{align*}
\]

where Hessian matrix and gradient on the right-hand side are evaluated at \((\mu_{1(k)}, \mu_{2(k)})\).

This further gives us

\[
\begin{align*}
&\frac{\partial U}{\partial t_1} = C_1 \left( \psi_1^2 - \psi_0^2 \right) - C_1 \left( \psi_2^2 - \psi_0^2 \right) - C_1 \left( \psi_2^2 - \psi_0^2 \right) - C_1 \left( \psi_2^2 - \psi_0^2 \right)
\end{align*}
\]

(13)

which in turn, on solving yields the followings:

\[
\begin{align*}
&\left( \mu_{1(k+1)} \right) = \left( \mu_{1(k)} \right) - \\
&\left( \begin{array}{c}
\frac{\partial^2 U}{\partial t_1^2} \frac{\partial U}{\partial t_1} - \frac{\partial^2 U}{\partial t_1 \partial t_2} \frac{\partial U}{\partial t_2} \\
\frac{\partial^2 U}{\partial t_1 \partial t_2} \frac{\partial U}{\partial t_2} - \frac{\partial^2 U}{\partial t_2^2} \frac{\partial U}{\partial t_2}
\end{array} \right)
\end{align*}
\]

(11)

The following computing algorithm has been developed to compute the optimal service rates and total optimal cost and profit of the system with two priority classes.

Step 1: begin
Step 2: input all variables
Step 3: compute derived variables
Step 4: compute derivatives
Step 5: compute functions
Step 6: \(t_1 \leftarrow \) initial service rate of HPC
Step 7: \(t_2 \leftarrow \) initial service rate of LPC
Step 8: iterating initial service rates
Step 9: while \(error=0.000000001\)
Step 10: compute optimal service rates
Step 11: compute total optimal cost
Step 12: compute total optimal profit
Step 13: end

V. NUMERICAL DEMONSTRATION OF THE RESULTS

Numerical demonstration is very useful to exhibit the results (performance measures) of the model. It focuses on the sensitivity analysis of one parameter relative to other parameters for determining the direction of future data-input. Parameters for which the model is relatively sensitive would require more attention of researchers engaged in this field, as compared to the parameters for which the model is relatively insensitive or less sensitive. Respective numerical demonstrations are given in the forthcoming tables.

VI. PROFIT ANALYSIS OF THE SYSTEM

A. Profit Evaluation for High Priority Class Customers

Let \(R_h\) be the earned revenue for providing service to each high priority customer, then total expected revenue (TER) is given as

\[
TER = R_h L_{hi}
\]

(15)

Also, corresponding to high priority class customer, total expected profit (TEP) is given as

\[
TEP = C_p \mu_1 + C_p L_{hi}
\]

(16)

Now, total expected profit (TEP) for high priority class customer is expressed as

\[
TEP = TEP - TER
\]

Thus, from above expressions we have

\[
TEP = (R_h L_{hi}) - (C_p \mu_1 + C_p L_{hi}) = R_h L_{hi} - C_p \mu_1 - C_p L_{hi}
\]

(17)

B. Profit Evaluation for Low Priority Class Customers

Let \(R_l\) be the earned revenue for providing service to each low priority customer, then total expected revenue (TER) is given as

\[
TER = R_l L_{Li}
\]

(18)

Also, corresponding to low priority class customer total expected cost (TEC) is given as
We also observed that when revenue per unit customer of priority classes increases, total expected profit of the system is observed when holding cost associated with low priority class customers increases.

When holding cost associated with high priority class customers increases, total optimal cost of the system is observed.

Further it is indicated that when holding cost per unit customer of both priority classes increases, total expected profit of high and low priorities customers decreases.

When holding cost associated with high priority class customers increases, a slight decrement in the total optimal cost (TOC) of the system is observed.

A slight decrement in the total optimal cost (TOC) of the system is observed when holding cost associated with low priority class customers increases.

We also observed that when revenue per unit customer of both priority classes increases, total expected profit of the system also increases.

IX. CONCLUSION

In this paper, an attempt has been made to present cost analysis along with profit analysis of a single server Markovian queueing system with two priority classes. We define total expected cost (TEC) of the system with both priority classes. Since, such systems are often encountered in practice, particularly in service-oriented operations, therefore we have attempted to optimize the total expected cost (TEC) of the system with respect to service rates of both classes and find out the optimal service rates for high and low priority classes and TOC of the system. Evaluation of TEP of both priority classes and of whole system has been carried out which brings the efficacy of the model closer to a realistic situation. The aim of the numerical demonstration is to study the variability of the model that is to assess the effect of one parameter on the others especially such parameters which characterize the performance measures of the model. Numerical demonstration carried out with the help of search program is mainly based on the simulations or hypothetical data-input. In this paper, we have preferred the hypothetical data-input to run the search program developed in the paper, which at later stage can also be tested for any real case study. It has good deal of potential to the applications in various areas such as inventory management, production management, voting management of electoral system, computer system and Telecommunications etc.

Now, total expected profit (TEP) for high-priority class customer is expressed as

\[ TEP = TER - TER \]

Thus, from above expressions we have

\[ TEP = R_1 - (C_{R_2} + C_{R_1}) = R_1 - C_{R_2} + C_{R_1} \]

\[ \text{TEP} = (R_2 - C_{R_1}) - \frac{\psi}{\mu_1} - \frac{\theta}{\phi} \]

Thus, from above expressions we have

\[ \text{TEP} = (R_1 - C_{R_2} + \frac{\psi}{\mu_2} - \frac{\theta}{\phi}) - C_{R_2} + T(P_1) \]

VII. TOTAL EXPECTED PROFIT (TEP) OF THE SYSTEM

In the light of equations (17) & (20), we can easily find the total expected profit of the system,

\[ T(P_1) = T(P_2) + T(P_1) = (R_1 - C_{R_2} + \frac{\alpha}{\beta}) - C_{R_2} + T(P_1) \]

\[ (R_2 - C_{R_1}) - \frac{\psi}{\mu_1} - \frac{\theta}{\phi} - C_{R_2} + T(P_1) \]

VIII. OBSERVATIONS

We draw the following observations on the basis of the optimum values computed for the performance measures of the system.

• When service cost associated with high priority class customers increases, total optimal cost (TOC) of the system also increases.

• Increment in service cost associated with low priority class customers; amounts to increase the total optimal cost (TOC) of the system.

• When revenue per unit customer of both priority classes increases, total expected profit of high and low priorities customers increase.

• A slight decrement in the total expected profit (TEP) of the system is shown when holding cost associated with low priority class (LPC) and high priority class (HPC) customers increase.

• Further it is indicated that when holding cost per unit customer of both priority classes increases, total expected profit of high and low priorities customers decrease.

• When holding cost associated with high priority class customers increases, a slight decrement in the total optimal cost (TOC) of the system is observed.

• A slight decrement in the total optimal cost (TOC) of the system is observed when holding cost associated with low priority class customers increases.

• We also observed that when revenue per unit customer of both priority classes increases, total expected profit of the system also increases.

IX. CONCLUSION

In this paper, an attempt has been made to present cost analysis along with profit analysis of a single server Markovian queueing system with two priority classes. We define total expected cost (TEC) of the system with both priority classes. Since, such systems are often encountered in practice, particularly in service-oriented operations, therefore we have attempted to optimize the total expected cost (TEC) of the system with respect to service rates of both classes and find out the optimal service rates for high and low priority classes and TOC of the system. Evaluation of TEP of both priority classes and of whole system has been carried out which brings the efficacy of the model closer to a realistic situation. The aim of the numerical demonstration is to study the variability of the model that is to assess the effect of one parameter on the others especially such parameters which characterize the performance measures of the model. Numerical demonstration carried out with the help of search program is mainly based on the simulations or hypothetical data-input. In this paper, we have preferred the hypothetical data-input to run the search program developed in the paper, which at later stage can also be tested for any real case study. It has good deal of potential to the applications in various areas such as inventory management, production management, voting management of electoral system, computer system and Telecommunications etc.

\[ \text{(say)} T(P_1) \]

\[ \text{(say)} T(P_1) \]

\[ \text{(say)} T(P_1) \]

\[ \text{(say)} T(P_1) \]
TABLE III
COMPUTATION OF TOTAL EXPECTED PROFIT FOR LPC
\[ \mu_1=5, \mu_2=4, \lambda_1=10, \lambda_2=12, N=100 \]

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
<th>R1</th>
<th>R2</th>
<th>T(P2)</th>
<th>T(P1)</th>
<th>T(PS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>10</td>
<td>700</td>
<td>1000</td>
<td>560</td>
<td>2316</td>
<td>2876</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>700</td>
<td>1000</td>
<td>560</td>
<td>2316</td>
<td>2876</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>700</td>
<td>1000</td>
<td>560</td>
<td>2316</td>
<td>2876</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>700</td>
<td>1000</td>
<td>560</td>
<td>2316</td>
<td>2876</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>700</td>
<td>1000</td>
<td>560</td>
<td>2316</td>
<td>2876</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>700</td>
<td>1000</td>
<td>560</td>
<td>2316</td>
<td>2876</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>700</td>
<td>1000</td>
<td>560</td>
<td>2316</td>
<td>2876</td>
</tr>
</tbody>
</table>

TABLE IV
COMPUTATION OF TOTAL EXPECTED PROFIT OF THE SYSTEM
\[ \mu_1=5, \mu_2=4, \lambda_1=10, \lambda_2=12, N=100 \]

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>R1</th>
<th>R2</th>
<th>T(P2)</th>
<th>T(P1)</th>
<th>T(PS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>15</td>
<td>10</td>
<td>700</td>
<td>1000</td>
<td>560</td>
<td>2316</td>
<td>2876</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>10</td>
<td>700</td>
<td>1000</td>
<td>560</td>
<td>2316</td>
<td>2876</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>10</td>
<td>700</td>
<td>1000</td>
<td>560</td>
<td>2316</td>
<td>2876</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>10</td>
<td>700</td>
<td>1000</td>
<td>560</td>
<td>2316</td>
<td>2876</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>10</td>
<td>700</td>
<td>1000</td>
<td>560</td>
<td>2316</td>
<td>2876</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>10</td>
<td>700</td>
<td>1000</td>
<td>560</td>
<td>2316</td>
<td>2876</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>10</td>
<td>700</td>
<td>1000</td>
<td>560</td>
<td>2316</td>
<td>2876</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES


Dr S. S. Mishra earned his M.Sc. degree in Mathematics with specialization in Statistics in 1987 and Ph.D. degree on "Bernoulli and Euler Polynomials" in 1991 from faculty of Science of Dr. Ram Manohar Lohia Avadh University, Faizabad, UP, India. Also earned D.Sc. Degree in 2008 in the field of "Operations Research & Computing" from Dr. Ram Manohar Lohia Avadh University, Faizabad, UP, India. Presently, he is serving as Reader/Assoc. Professor in the Dept. of
Mathematics and Statistics, Dr Ram Manohar Lohia, Avadh University, Faizabad, UP, India.

His current research interests include Numerical and Statistical Computing, Operations Research, Information Technology and Supply Chain Networking and Applied Economics etc. To his credit, he has 41 research papers published in national and international journals of repute including Opsearch, Journal of Indian Statistical Association, Bulgarian Journal of Applied Mathematical Sciences, Computers and Mathematics with Applications, Management Dynamics, European Journal of Operations Research, American Journal of Mathematical and Management Sciences etc. Under young scientist category, he received a best research paper award from VPI in 1998 and a SERC visiting fellowship in O.R. from the Department of Science and Technology, Govt. of India in 2000.

Also supervised as Principal Investigator two research projects (one in India and another in abroad) and 07 Ph.Ds. in the area of O.R. and Computing. Selected and worked as an Associate Professor under the scheme of World Bank/UNDP during 2003-2005 in the Department of Applied Mathematics at Debub University, Ethiopia, N-East Africa. Also served as a Mathematical Reviewer of American Mathematical Society, Computers and Mathematics with Applications, Elsevier Ltd in the areas of Numerical and Statistical Computing and Operations Research. He is also associated as an active member (life member) of Operations Research Society of India and Society for Applicable and Industrial Mathematics, Bharat Ganit Parishad, India and European Grid etc.

Dr. Mishra has also availed two copy rights for his research techniques/software from Ministry of Human Resource, Govt. of India. And was also invited (with grant fellowship) to present his talk on cost analysis of machine interference model by International Congress on Industrial and Applicable Mathematics 2007 at Zurich University, Switzerland. He was also invited to present his talk in the field of Econo-operations Research in the International Conference ENEC08 at Hyperion University, Romania in May 2008 and also offered/invited to present his talk on Econo-operations Research in the international conference EDENI at Pitesti University, Romania in March 20-21, 2009. He has also served as a guest Editor of International Journal of Applied Mathematics and Computer Science (Special Issue on Operations Research and Computers), Winter Issue 2009. Also invited to participate in the interaction meet with Nobel Prize winners of the world held at IIT Allahabad, UP, sponsored by Department of Science and Technology, Govt. of India in between Dec. 15-21, 2008.

Dinesh Kumar Yadav obtained his degree of B.Sc. in Mathematics from the faculty of the Science of Dr Ram Manohar Lohia Avadh University, Faizabad, UP, India in the year 1996. He also earned his M.Sc. degree in Mathematics with specialization in Operations Research and Statistics from the Department of Mathematics and Statistics, Faculty of Science of Dr Ram Manohar Lohia Avadh University, Faizabad, UP, India in the year 1998. Presently, he is pursuing his Ph.D. programme in the field of Operations Research and Computing from Dr Ram Manohar Lohia Avadh University, Faizabad, UP, India. His papers have already appeared in the International Journal of Bulgarian Applied Mathematical Sciences and International Journal of Computer Control and Communication etc. His research areas include Operations Research, Computing, Applied Statistics and Economics etc.