Abstract—The purpose of the present paper is to study the concept of fuzzy bi-ideals in ternary semirings. We give some characterizations of fuzzy bi-ideals. Characterizations of regular ternary semirings are provided.

Keywords—Fuzzy ternary subsemiring, fuzzy quasi-ideal, fuzzy bi-ideal, regular ternary semiring

I. INTRODUCTION

Ternary semirings are one of the generalized structures of semirings. The notion of ternary algebraic system was introduced by Lehmer [8]. He investigated certain ternary algebraic systems called triplexes which turn out to be commutative ternary groups. Dutta and Kar [1] introduced the notion of ternary semiring which is a generalization of the ternary ring introduced by Lister [9]. Good and Hughes [3] introduced the notion of bi-ideal and Steinfeld [11], [12] introduced the notion of quasi-ideal. In 2005, Kar [5] studied quasi-ideals and bi-ideals of ternary semirings. Ternary semiring arises naturally, for instance, the ring of integers \(Z \) is a ternary semiring. The subset \(Z^+ \) of all positive integers of \(Z \) forms an additive semigroup and which is closed under the ring product. Now, if we consider the subset \(Z^- \) of all negative integers of \(Z \), then we see that \(Z^- \) is closed under the binary ring product; however, \(Z^- \) is not closed under the binary ring product, i.e., \(Z^- \) forms a ternary semiring. Thus, we see that in the ring of integers \(Z \), \(Z^+ \) forms a semiring whereas \(Z^- \) forms a ternary semiring. More generally; in an ordered ring, we can see that its positive cone forms a semiring whereas its negative cone forms a ternary semiring. Thus a ternary semiring may be considered as a counterpart of semiring in an ordered ring.

The theory of fuzzy sets was first inspired by Zadeh [14]. Fuzzy set theory has been developed in many directions by many scholars and has evoked great interest among mathematicians working in different fields of mathematics. Rosenfeld [13] introduced fuzzy sets in the realm of group theory. Fuzzy ideals in rings were introduced by Liu [10] and it has been studied by several authors. Jun [4] and Kim and Park [7] have also studied fuzzy ideals in semirings. In 2007, [6] we have introduced the notions of fuzzy ideals and fuzzy quasi-ideals in ternary semirings. Our main purpose in this paper is to introduce the notions of fuzzy bi-ideal in ternary semirings and study regular ternary semiring in terms of these two subsystems of fuzzy subsemirings. We give some characterizations of fuzzy bi-ideals.

Kavikumar and Azme are with the Centre for Science Studies, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia e-mail: kaviphil@gmail.com.

Y. B. Jun is with the Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea.

II. PRELIMINARIES

In this section, we review some definitions and some results which will be used in later sections.

Definition 2.1. A set \(R \) together with associative binary operations called addition and multiplication (denoted by + and \cdot , respectively) will be called a semiring provided:

(i) Addition is a commutative operation.
(ii) there exists \(0 \in R \) such that \(a + 0 = a \) and \(a \cdot 0 = 0 \) for each \(a \in R \).
(iii) multiplication distributes over addition both from the left and the right. i.e., \(a(b + c) = ab + ac \) and \((a + b)c = ac + bc \).

Definition 2.2. A nonempty set \(S \) together with a binary operation, called addition and a ternary multiplication, denoted by juxtaposition, is said to be a ternary semiring if \((S, +) \) is an additive commutative semigroup satisfying the following conditions:

(i) \((abc)de = a(bcd)e = ab(cde) \)
(ii) \((a + b)cd = acd + bcd \)
(iii) \(a(b + c)d = abd + acd \)
(iv) \(ab(c + d) = abc + abd \), for all \(a, b, c, d, e \in S \).

Definition 2.3. (i) Let \(S \) be a ternary semiring. An additive subsemigroup \(T \) of \(S \) is called a ternary semiring if \(t_1t_2t_3 \in T \), for all \(t_1, t_2, t_3 \in T \).
(ii) Let \(S \) be a ternary semiring. If there exists an element \(0 \in S \) such that \(0+a = a \) and \(0ab = a0b = 0b = 0a = 0 \) for all \(a, b \in S \), then “0” is called the zero element or simply the zero of the ternary semiring \(S \). In this case we say that \(S \) is a ternary semiring with zero.
(iii) Let \(A, B, C \) be three subsets of ternary semiring \(S \). Then by \(ABC \), we mean the set of all finite sums of the form \(\sum a_ib_jc_k \) with \(a_i \in A, b_j \in B, c_k \in C \).
(iv) An additive subsemigroup \(I \) of \(S \) is called a left (resp., right, and lateral) ideal of \(S \) if \(s_1s_2i \) (resp. \(is_1s_2, s_1is_2 \)) \(\subseteq I \), for all \(s_1, s_2 \in S \) and \(i \in I \). If \(I \) is both left and right ideal of \(S \), then \(I \) is called a two-sided ideal of \(S \). If \(I \) is a left, a right and a lateral ideal of \(S \), then \(I \) is called an ideal of \(S \). An ideal of \(I \) of \(S \) is called a proper ideal if \(I \neq S \).

Definition 2.4. (i) An additive subsemigroup \((Q, +) \) of a ternary semiring \(S \) is called a quasi-ideal of \(S \) if \(QSS \cap (SQS + SSQ) \subseteq Q \).
(ii) An additive subsemigroup \((Q, +) \) of a ternary semiring \(S \) is called a bi-ideal of \(S \) if \(QSQSQ \subseteq Q \).

Now, we review the concept of fuzzy sets [10], [13], [14]). Let \(X \) be a non-empty set. A map \(\mu : X \rightarrow [0, 1] \) is called a fuzzy set in \(X \), and the complement of a fuzzy set \(\mu \) in \(X \),
denoted by \(\mathfrak{F} \), is the fuzzy set in \(X \) given by \(\mathfrak{F}(x) = 1 - \mu(x) \) for all \(x \in X \).

Let \(X \) and \(Y \) be two non-empty sets and \(f : X \to Y \) a function, and let \(\mu \) and \(\nu \) be any fuzzy sets in \(X \) and \(Y \) respectively. The image of \(\mu \) under \(f \), denoted by \(f(\mu) \), is a fuzzy set in \(Y \) defined by:

\[
f(\mu)(y) = \begin{cases}
\sup_{x \in f^{-1}(y)} \mu(x) & \text{if } f^{-1}(y) \neq \emptyset, \\
0 & \text{otherwise,}
\end{cases}
\]

for each \(y \in Y \). The preimage of \(\nu \) under \(f \), denoted by \(f^{-1}(\nu) \), is a fuzzy set in \(X \) defined by \((f^{-1}(\nu))(x) = \nu(f(x)) \) for each \(x \in X \).

Definition 2.5. A fuzzy ideal of a semiring \(R \) is a function \(A : R \to [0, 1] \) satisfying the following conditions:

(i) \(A \) is a fuzzy subsemigroup of \((R,+)\); i.e., \(A(x - y) \geq \min\{A(x), A(y)\} \),

(ii) \(A(xy) \geq \max\{A(x), A(y)\} \), for all \(x, y \in R \).

Definition 2.6. Let \(A \) and \(B \) be any two subsets of \(S \). Then \(A \cap B, A \cup B, A+B \) and \(A \circ B \) are fuzzy subsets of \(S \) defined by:

\[
(A \cap B) = \min\{A(x), B(x)\},
\]
\[
(A \cup B) = \max\{A(x), B(x)\},
\]
\[
(A + B)(x) = \begin{cases}
\sup\{\min\{A(y), A(z)\} \} & \text{if } x = y + z, \\
0 & \text{otherwise.}
\end{cases}
\]
\[
(A \circ B)(x) = \begin{cases}
\sup\{\min\{A(y), A(z)\} \} & \text{if } x = yz, \\
0 & \text{otherwise.}
\end{cases}
\]

For any \(x \in S \) and \(t \in (0, 1] \), define a fuzzy point \(x_t \) as:

\[
x_t(y) = \begin{cases}
t & \text{if } y = x, \\
0 & \text{if } y \neq x.
\end{cases}
\]

If \(x_t \) is a fuzzy point and \(A \) is any fuzzy subset of \(S \) and \(x_t \leq A \), then we write \(x_t \in A \). Note that \(x_t \in A \) if and only if \(x_t \in A \) where \(A_t \) is a level subset of \(A \). If \(x_t \) and \(y_t \) are fuzzy points, then \(x_t + y_t = (xy)_{\min\{r,s\}} \).

Definition 2.7. [6] A fuzzy subset \(A \) of a fuzzy subsemigroup of \(S \) is called a fuzzy ternary subsemiring of \(S \) if:

(i) \(A(x - y) \geq \min\{A(x), A(y)\} \), for all \(x, y \in S \)

(ii) \(A(-x) = A(x) \)

(iii) \(A(xy) \geq \min\{A(x), A(y)\} \), for all \(x, y, z \in S \).

Definition 2.8 [6] A fuzzy subsemigroup \(A \) of a ternary semiring \(S \) called a fuzzy ideal of \(S \) if \(A : S \to [0, 1] \) satisfying the following conditions:

(i) \(A(x - y) \geq \min\{A(x), A(y)\} \), for all \(x, y \in S \)

(ii) \(A(xy) \geq \max\{A(x), A(y)\} \)

(iii) \(A(xy) \geq A(x) \)

(iv) \(A(xy) \geq A(y) \), for all \(x, y, z \in S \)

A fuzzy subset \(A \) with conditions (i) and (ii) is called a fuzzy left ideal of \(S \). If \(A \) satisfies (i) and (iii), then it is called a fuzzy right ideal of \(S \). Also if \(A \) satisfies (i) and (iv), then it is called a fuzzy lateral ideal of \(S \). A fuzzy ideal is a ternary semiring of \(S \), if \(A \) is a fuzzy left, a fuzzy right and a fuzzy lateral ideal of \(S \).

Example 2.9 [6]. Let \(Z \) be a ring of integers and \(S = \mathbb{Z}_0 \subseteq \mathbb{Z} \) be the set of all negative integers with zero. Then with the binary addition and ternary multiplication, \((\mathbb{Z}_0, +, \cdot)\) forms a ternary semiring \(S \) with zero. Define a fuzzy subset \(A : Z \to [0, 1] \), we have:

\[
A(x) = \begin{cases}
1 & \text{if } x \in \mathbb{Z}_0, \\
0 & \text{otherwise.}
\end{cases}
\]

Then \(A \) is a fuzzy ternary subsemiring of \(S \).

Example 2.10 [6]. Consider the set integer module 5, non-positive integer \(\mathbb{Z}_5 = \{0, -1, -2, -3, -4\} \) with the usual addition and ternary multiplication, we have:

\[
\begin{array}{cccccccc}
+ & 0 & -1 & -2 & -3 & -4 & 0 & 0 \\
0 & 0 & -1 & -2 & -3 & -4 & 0 & 0 \\
-1 & -1 & 0 & -1 & -2 & -3 & -4 & 0 \\
-2 & -2 & -1 & 0 & -1 & -2 & -3 & -4 \\
-3 & -3 & -2 & -1 & 0 & -1 & -2 & -3 \\
-4 & -4 & -3 & -2 & -1 & 0 & -1 & -2 \\
\end{array}
\]

Clearly \((\mathbb{Z}_5, +, \cdot)\) is a ternary semiring. Let a fuzzy subset \(A : \mathbb{Z}_5 \to [0, 1] \) be defined by \(A(0) = t_0 \) and \(A(-1) = A(-2) = A(-3) = A(-4) = t_1 \), where \(t_0 \leq t_1 \) and \(t_0, t_1 \in (0, 1] \). Routine calculations show that \(A \) is a fuzzy ideal of \(\mathbb{Z}_5 \).

Definition 2.11 [6] Let \(A \) be a fuzzy subset of ternary semiring \(S \). We define:

\[
SAS + SSASS(z) = \begin{cases}
\sup\{\min\{A(a), A(b)\} \} & \text{if } z = x(a + xy)g, \\
0 & \text{otherwise.}
\end{cases}
\]

for all \(x, y, a, b \in S \).

III. Fuzzy Bi-Ideals of Ternary Semiring

Definition 3.1. A fuzzy subsemigroup \(\mu \) of a ternary semiring \(S \) is called a fuzzy quasi-ideal of \(S \) if:

\[
(FQI1) \mu S \cap S \mu \subseteq \mu, \quad (FQI2) \mu S \cap SS\mu \subseteq \mu,
\]

i.e., \(\mu(x) \geq \min\{\mu(S), \mu(S)S, SS\mu\} \).
To strengthen the above definition, we present the following example.

Example 3.2. Consider the ternary semiring \((\mathbb{Z}_5, +, \cdot, \cdot)\) as defined in Example 2.10 in this paper. Let \(A = \{0, -2, -3\} \). Then \(SSA = \{-2, -3, 4\}, (SS + SSASS) = \{0, 1, -2, -3\} \) and \(ASS = \{-1, -2, -3\} \). Therefore \(ASS \cap (SS + SSASS) \cap SSA = \{-2, -3\} \subseteq A \). Hence \(A\) is a quasi-ideal of \(\mathbb{Z}_5\). Define a fuzzy subset \(A : \mathbb{Z}_5 \to [0, 1] \) by \(A(0) = A(-2) = A(-3) = 1\) and \(A(-1) = A(-4) = 0\). Clearly \(A\) is a fuzzy quasi-ideal of \(\mathbb{Z}_5\).

Definition 3.3. A fuzzy ternary subsemiring \(\mu\) of \(S\) is called a fuzzy bi-ideal of \(S\) if

\[
\mu(S)\mu(S) \subseteq \mu(x, y, z, w, v) \quad \forall \quad x, y, z, w, v \in S
\]

i.e., \(\mu(x,y,z) \geq \min\{\mu(x), \mu(y), \mu(z)\} \quad \forall \quad x, y, z \in S\). Then \(\mathbb{Z} = S\) is a ternary semiring under usual addition and ternary multiplication. Let \(B = 2S\) Thus \(BBSS = 2SS2SS2S = 6(\text{SSS})SS = 6(\text{SSS}) = 6S \subseteq 2S = B\). Hence \(B\) is a bi-ideal of \(\mathbb{Z}^+\).

Definition 3.7. Let \(\mathbb{Z} = S\) be the set of all negative integers. Then \(\mathbb{Z} = S\) is a ternary semiring under usual addition and ternary multiplication. Then \(B = 2S\) Thus \(BBSS = 2SS2SS2S = 6(\text{SSS})SS = 6(\text{SSS}) = 6S \subseteq 2S = B\). Hence \(B\) is a bi-ideal of \(\mathbb{Z}^+\).

Denote \(\mu : S \to [0, 1]\) by

\[
\mu(x) = \begin{cases}
1, & \text{if } x \in 2S \\
0, & \text{otherwise}
\end{cases}
\]

For any \(t \in [0, 1]\), \(\mu_t = \{2S\}\), since \(2S\) is a bi-ideal in \(\mathbb{Z}^+\), \(\mu_t\) is the bi-ideal in \(\mathbb{Z}^+\) for all \(t\). Hence \(\mu\) is a fuzzy bi-ideal of \(\mathbb{Z}^+\).

Lemma 3.5. Let \(\mu\) be a fuzzy subset of \(S\). If \(\mu\) is a fuzzy left ideal, fuzzy right ideal and left ideal of ternary semiring of \(S\), then \(\mu\) is a fuzzy quasi-ideal of \(S\).

Proof: Let \(\mu\) be a fuzzy left ideal, fuzzy right ideal and fuzzy left ideal of \(S\). Let \(x = a_1s_2 = a_1(1 + c_1c_2)s_2 = s_1s_2d\) where \(a, b, c, d, s_1, s_2 \in S\).

Consider \((\mu S) \cap (S\mu S + SS\mu S) \cap SS\mu(x)\)

\[
= \min\{\mu(x), \mu_S(x)S + SS\mu(x)\}
\]

\[
= \min\{\mu_S(x), \mu_S(x)S + SS\mu(x)\}
\]

\[
= \min\{\mu_S(x), SS\mu(x)\}
\]

\[
= \mu_S(x)S + SS\mu(x)\subseteq S \subseteq \mu_S(x)S + SS\mu(x)
\]

Thus, \((\mu S) \cap (S\mu S + SS\mu S) \cap SS\mu(x) \subseteq \mu(x)\).

Hence \(\mu\) is a fuzzy quasi-ideal of \(S\).

Lemma 3.6. For any non-empty subsets \(A, B\) and \(C\) of \(S\),

\[
1. f_{A\cap B}fc = f_{A\cup B\cap C}
\]

\[
2. f_A \cap f_B \cap f_C = f_{A\cup B\cup C}
\]

\[
3. f_A + f_B = f_{A\cup B}
\]

Proof: Proof is straight forward.

Lemma 3.7. Let \(Q\) be an additive subsemigroup of \(S\).

\[
1. Q\) is a quasi-ideal of \(S\) if and only if \(f_Q\) is a fuzzy quasi-ideal of \(S\).
\]

\[
2. Q\) is a bi-ideal of \(S\) if and only if \(f_Q\) is a fuzzy bi-ideal of \(S\).
\]

Proof: Proof of (1) can be seen in [8].

Lemma 3.8. Any fuzzy quasi-ideal of \(S\) is a fuzzy bi-ideal of \(S\).

Proof: Let \(\mu\) be any fuzzy quasi-ideal of \(S\). Then we have

\[
\mu S\mu \subseteq \mu S\mu \subseteq \mu S\mu S \subseteq \mu S\mu \subseteq \mu S\mu S
\]

so, \(\mu S\mu \subseteq \mu S\mu S\mu\) and taking \(\{0\} \subseteq S \subseteq \mu S\mu\) we have, \(\mu S\mu \subseteq \mu S\mu \cap (S\mu S + SS\mu S) \cap SS\mu \subseteq S\mu\)

Hence, \(\mu\) is a fuzzy bi-ideal of \(S\).

Remark 3.9. The converse of Lemma 3.8 does not hold, in general, that is, a fuzzy bi-ideal of a ternary semiring \(S\) may not be a fuzzy quasi-ideal of \(S\).

Theorem 3.10. Let \(\mu\) be a fuzzy subset of \(S\). If \(\mu\) is a fuzzy left, fuzzy right and left ideal of ternary semiring of \(S\), then \(\mu\) is a fuzzy bi-ideal of \(S\).

Proof: As \(\mu\) is fuzzy left, right and left ideal of \(S\) and Lemma 3.5, \(\mu\) is a fuzzy quasi-ideal of \(S\). Hence by Lemma 3.8, \(\mu\) is a fuzzy bi-ideal of \(S\).

Theorem 3.11.[6] Let \(\mu\) be a fuzzy subset of \(S\). Then \(\mu\) is a fuzzy quasi-ideal of \(S\), if and only if \(\mu_t\) is a quasi-ideal of \(S\), for all \(t \in 1m(\mu)\).

Proof: Let \(\mu\) be a fuzzy bi-ideal of \(S\). Let \(t \in 1m(\mu)\). Suppose \(x, y, z \in S\) such that \(x, y, z \in \mu_t\). Then \(\mu(x) \geq t, \mu(y) \geq t, \mu(z) \geq t\)
ideal of ternary semiring

Then

ternary subsemiring of

and

Theorem 3.14.

Let

as a fuzzy bi-ideal of

as a fuzzy bi-ideal of a ternary semiring

Consider

Since any fuzzy quasi-ideal of

(2)

First assume that (1) holds. Let

For a ternary semiring

Lemma 3.7 (1).

Theorem 3.14. If

is a fuzzy bi-ideal of a ternary semiring

and

is a fuzzy ternary subsemiring of

then

is a fuzzy bi-ideal of

Proof: Let

be a fuzzy bi-ideal and

be a fuzzy ternary subsemiring of

Clearly

is a fuzzy ternary subsemiring of

Next we prove that

is a fuzzy bi-ideal of ternary semiring

Let

such that

Theorem 4.1.

A ternary semiring

is called regular if for every

there exists an

such that

Lemma 4.1. A ternary semiring

is regular if and only if

for every fuzzy right ideal

fuzzy left ideal

and

lateral ideal

of

Proof: Straight forward from Theorem 5.1 in [5].

IV. REGULAR TERNARY SEMIRING

A ternary semiring

is called regular if for every

there exists an

such that

Then since

is regular, there exists an element

in

such that

Then we have

Theorem 4.2. For a ternary semiring

the following conditions are equivalent:

(1)

is regular

(2)

for every fuzzy bi-ideal

of

(3)

for every fuzzy quasi-ideal

of

Proof: (1)⇒(2) First assume that (1) holds. Let

be any fuzzy bi-ideal of

and

any element of

Then since

is regular, there exists an element

in

such that

Then we have

(2)⇒(3) Since any fuzzy quasi-ideal of

is a fuzzy bi-ideal of

by Lemma 3.8.

(3)⇒(1) Assume (3) holds. Let

be any quasi-ideal of

and

any element of

Then it follows from Lemma 3.7 (1)
that the characteristic function f_Q is a quasi-ideal of S. Then we have

$$f_Q(a) = (f_Q + f_S + f_Q + f_S + f_Q)(a) = f_Q(a) = 1$$

and so, $a \in QS$. Thus $Q \subseteq QS$. On the other hand, Q is a quasi-ideal of S.

$$QS \subseteq (QS \cap QS \cap SS)$$

then,

$$QS \subseteq (QS \cap (SQ + SS) \cap SS) \cap SS \subseteq Q$$

and so we have $QS = Q$ and hence, by [5, Theorem 3.4], S is a regular ternary semiring.

References

