Molar Excess Volumes and Excess Isentropic Compressibilities of Ternary Mixtures Containing 2-Pyrrolidinone

Jairib S. Yadav, Dimple, and Vinod K. Sharma

Abstract—Molar excess volumes, V^E_{ijk} and speeds of sound, u_{ijk} of 2-pyrrolidinone (i) + benzene or toluene (j) + ethanol (k) ternary mixture have been measured as a function of composition at 308.15 K. The observed speeds of sound data have been utilized to determine excess isentropic compressibilities, $(\kappa^E_S)_{ijk}$ of ternary $(i+j+k)$ mixtures. Molar excess volumes, V^E_{ijk} and excess isentropic compressibilities, $(\kappa^E_S)_{ijk}$ data have fitted to the Redlich-Kister equation to calculate ternary adjustable parameters and standard deviations. The Moelywn-Huggins concept (Huggins in Polymer 12: 389-399, 1971) of connectivity between the surfaces of the constituents of binary mixtures has been extended to ternary mixtures (using the concept of a connectivity parameter of third degree of molecules, ξ, which intern depends on its topology) to obtain an expression that describes well the measured V^E_{ijk} and $(\kappa^E_S)_{ijk}$ data.

Keywords—Connectivity parameter of third degree, ξ, Excess isentropic compressibilities, $(\kappa^E_S)_{ijk}$, Interaction energy parameter, χ, Molar excess volumes, V^E_{ijk}, Speeds of sound, u_{ijk}.

I. INTRODUCTION

Ever since the suggestion that constitutional formula of a molecule is a special kind of graph [1] called molecular graph and a very good correlation have been observed [2-6] between topological index [7] of a molecule and is physico-chemical properties. The characterization of the mixtures through their topological investigations [8-10] has proved to be a reliable way to extract information about the structure of components of mixtures in pure and mixed state and molecular interactions operating among the constituents of mixtures. Further topological investigations have been successfully employed to determine molar excess volumes, molar excess enthalpies, excess isentropic compressibilities of binary [11-14] and ternary [15-17] mixtures. Cyclic amides are of great interest because the nitrogen and carbon atoms of peptide bond are linked by a ring composed of methyl groups.

These compounds have generated special interest because the amide group is a structural part of peptides, polypeptides and proteins. IR spectroscopic and thermodynamic studies of 2-pyrrolidinone + benzene or toluene or o- or p- or m-xylene (j) binary mixtures have revealed [18-20] that 2-pyrrolidinone is a self associated molecular entity (mixture of cyclic and open dimer). As a continuation and extension of our studies on the thermodynamic properties of 2-pyrrolidinone (i) + benzene or toluene or o- or p- or m-xylene (j) mixture, we report here molar volumes, V^E_{ijk}, speeds of sound, u_{ijk} data for 2-pyrrolidinone (i) + benzene or toluene (j) + ethanol (k) ternary mixtures at 308.15 K. An attempt has also been made to develop an expression by employing topology of the constituents of mixtures that describes well molar excess volumes, V^E_{ijk} and excess isentropic compressibility, $(\kappa^E_S)_{ijk}$ of these ternary mixtures.

II. EXPERIMENTAL

A. Materials
2-Pyrrolidinone (2-Py) (Fluka), benzene, toluene and absolute ethanol (AR Grade) were purified by standard methods [21].

B. Methods
The purities of the purified liquids were checked by measuring their densities with a pycknometer at 298.15 ± 0.01 K and the resulting densities (reported in Table I) agreed to within ± 0.05 kgm$^{-3}$ of their corresponding literature values [21].

Molar excess volumes, V^E_{ijk} for ternary mixtures were measured in a dilatometer in the manner described elsewhere [22]. The dilatometer had three limbs for three components. The change in liquid level of dilatometer capillary was measured with a cathetometer that could read to ± 0.001 cm. The temperature of the water thermostat was controlled to better than ± 0.01 K by means of toluene regulator. The uncertainty in the measured V^E_{ijk} values is ± 0.5 percent.

The speed of sound at frequency 2MHz was determined using a quartz crystal interferometer (Model-M 80, Mittal Enterprises, New Delhi, India). The measuring cell was a specially designed double walled cell in which water was circulated to maintain the temperature at 308.15 ± 0.0 1K. The speed of sound values for the purified liquids at 298.15 ±
0.01 K (recorded in Table I) compare well with their corresponding experimental values [23–27]. The uncertainty in the measured speed of sound measurements is ± 1 m/sec.

III. RESULTS

Molar excess volumes, \(\nabla E_{ijk} \) and speeds of sound, \(u_{ijk} \), data of 2-Py (i) + benzene (j) + toluene (j) + ethanol (k) ternary mixtures were calculated as a function of composition at 308.15 K are recorded in Tables II and III respectively. The isentropic compressibilities, \((\kappa_s)_{ijk} \), for ternary mixtures were determined using the expression:

\[
(\kappa_s)_{ijk} = (\rho_{ijk} \cdot u_{ijk}^2)^{-1}
\]

(1)

The densities, \(\rho_{ijk} \) of ternary mixtures were calculated from their experimental molar excess volumes data using the Equation (2)

\[
\nabla E_{ijk} = \sum_{i=1}^{k} x_i M_i (\rho_{ijk})^{-1} - \sum_{i=1}^{k} x_i M_i (\rho_i)^{-1}
\]

(2)

where \(x_i, M_i \) and \(\rho_i \) are the mole fraction, molar mass and density respectively of component (i) in \((i + j + k) \) ternary mixtures.

Excess isentropic compressibilities, \((\kappa_s^E)_{ijk} \) were evaluated using Equation (3)

\[
(\kappa_s^E)_{ijk} = (\kappa_s)_{ijk} - \kappa_{id}
\]

(3)

\(\kappa_{id} \) was obtained according to Benson and Kiyohara [28]

\[
\kappa_{id} = \sum_{i=1}^{j} \phi_i \left[V_{s,i} + \frac{TV_{s})_{ijkl}^2}{C_{p,i}} \right] - T \left[\sum_{i=1}^{j} x_i V_i \right] \left[\sum_{i=1}^{j} \phi_i C_{p,i} \right]
\]

(4)

where \(\phi_i \) is the volume fraction of component (i) in the mixture referred to as the unmixed state, \(x_i \) is the corresponding mole fraction, \(T \) is the absolute temperature, and \(\kappa_{s,i}, V_{s}, \alpha_i, \) and \(C_{p,i} \) are the isentropic compressibility, molar volume, thermal expansion coefficient, and molar heat capacity of the pure component (i), respectively. The values of \(\alpha \) and \(C_{p,i} \) were taken from literature [29].

\(\alpha \) value for 2-Py was evaluated in the same manner as suggested by Hilderbrand [30]. The resulting \((\kappa_s)_{ijk} \) and \((\kappa_s^E)_{ijk} \) values for the studied \((i + j + k) \) ternary mixtures are recorded in Table III and \(\nabla E_{ijk} \), \((\kappa_s^E)_{ijk} \) values are plotted in Figs. 1, 2, 3 and 4 respectively.

\[
 \begin{align*}
X_{ijk}^E (X = V \ or \ \kappa_s) & = x_i x_j \left[\frac{2}{n} \sum_{i=0}^{n} x_{i}(x_i - x_j)^n \right] + x_i x_k \left[\frac{2}{n} \sum_{i=0}^{n} x_{i} (x_i - x_k)^n \right] \
+ x_j x_k \left[\frac{2}{n} \sum_{i=0}^{n} x_{i} (x_i - x_k)^n \right] + x_k x_j \left[\frac{2}{n} \sum_{i=0}^{n} x_{i} (x_i - x_j)^n \right] - x_i x_j x_k \left[\frac{2}{n} \sum_{i=0}^{n} x_{i} (x_i - x_j)^n \right] & \
\end{align*}

(5)

\(X_{ijk}^E \) values for ternary mixtures were fitted to Redlich-Kister Equation (5) by the least-squares method and

\[
X_{ijk}^E = x_i x_j x_k \left[\frac{2}{n} \sum_{i=0}^{n} x_{i} (x_i - x_j)^n \right] \
\end{align*}

(6)

are recorded along with their standard deviations, \(\sigma \) \((X^E)_{ijk} \) \((X = V \ or \ \kappa_s) \) defined by

\[
\sigma \ (X^E)_{ijk} = \frac{\sqrt{\sum (X_{ijk}(\text{exp}) - X_{ijk}(\text{Calc Equation4)})^2}}{(m-n)}^{0.5}
\]

where \(m, n \) are the number of data points and adjustable parameters in Equation (5) in Tables II and III respectively.

TABLE II

X	0.1558	0.9793	-0.121	-0.100
Y	0.1214	0.6976	-0.100	-0.115
Z	0.2083	0.3519	-0.243	-0.242
Alpha	0.2455	0.4351	-0.269	-0.277
Beta	0.2806	0.1970	-0.390	-0.388

\((X_{V_{exp}}) \) values for the various (i+j+k) ternary mixtures evaluated from Graph theory with their corresponding experimental values; Also included are the various parameters \(V_{ijk}(n=0-2) \) along with their standard deviation, \(\sigma \ (X_{V_{exp}}) \), interaction parameters \(\lambda, \kappa, \eta, \) etc. and connectivity parameters of third degree, \(\xi(i+1-k) \).
$V_{ijk}^{(0)} = -0.513; \ V_{ijk}^{(1)} = 19.431; \ V_{ijk}^{(2)} = 181.875; \ \sigma (V_{ijk}^{E}) = 0.003$

$(\xi_i) = 1.001; (\xi_j) = 0.666; (\xi_k) = 1.503$

$\chi^* = -1.100; \ \chi'_{ij} = -0.317; \ \chi'_{jk} = 0.979; \ \chi'_{ik} = -1.058$
TABLE III

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(x_j)</th>
<th>(u_{ij}) (m/s(^2))</th>
<th>((\kappa_{ij})_{hk}) (Tpa(^{-1}))</th>
<th>((\kappa_{E}^{(0)})_{jk}) (Tpa(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-pyrophiladine (i) + benzene (j) + ethanol (k)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0982</td>
<td>0.1092</td>
<td>1201</td>
<td>836.2</td>
<td>-75.7</td>
</tr>
<tr>
<td>0.1526</td>
<td>0.1529</td>
<td>1233</td>
<td>770.6</td>
<td>-84.9</td>
</tr>
<tr>
<td>0.2465</td>
<td>0.1712</td>
<td>1274</td>
<td>692.7</td>
<td>-89.3</td>
</tr>
<tr>
<td>0.3018</td>
<td>0.6178</td>
<td>1327</td>
<td>613.1</td>
<td>-30.6</td>
</tr>
<tr>
<td>0.3440</td>
<td>0.0830</td>
<td>1315</td>
<td>630.1</td>
<td>-108.4</td>
</tr>
<tr>
<td>0.3925</td>
<td>0.5038</td>
<td>1353</td>
<td>576.7</td>
<td>-37.9</td>
</tr>
<tr>
<td>0.4510</td>
<td>0.1324</td>
<td>1351</td>
<td>537.3</td>
<td>-80.6</td>
</tr>
<tr>
<td>0.5022</td>
<td>0.4118</td>
<td>1395</td>
<td>527.5</td>
<td>-42.3</td>
</tr>
<tr>
<td>0.6378</td>
<td>0.0699</td>
<td>1431</td>
<td>484.7</td>
<td>-64.7</td>
</tr>
<tr>
<td>0.7112</td>
<td>0.1368</td>
<td>1472</td>
<td>448.9</td>
<td>-46.8</td>
</tr>
<tr>
<td>0.7331</td>
<td>0.2113</td>
<td>1493</td>
<td>434.2</td>
<td>-38.5</td>
</tr>
<tr>
<td>0.8316</td>
<td>0.0612</td>
<td>1530</td>
<td>403.6</td>
<td>-34.7</td>
</tr>
<tr>
<td>0.8748</td>
<td>0.0310</td>
<td>1550</td>
<td>389.2</td>
<td>-29.2</td>
</tr>
</tbody>
</table>

\(\kappa_{(0)}^{(0)} \) = 3.3, \(\kappa_{(i)}^{(0)} \) = 48.9, \(\kappa_{(2)}^{(2)} \) = 274.1, \(\sigma \) \((\kappa_{E}^{(0)})_{hk} \) = 0.1 TPa\(^{-1}\)

\(\xi \) = 0.1, \(\xi \) = 0.666; \(\xi \) = 2.000

\(\chi^* = -32.5; \chi_{ij} = -26.7; \chi_{ik} = -346.1; \chi_{ik} = -89.3 \)

IV. DISCUSSION

We are unaware of any published \(\chi_{ijk} \) and \((\kappa_{E}^{(0)})_{hk} \) data of the studied \((i + j + k) \) mixtures at 308.15 K with which to compare our results. \(\chi_{ijk} \) and \((\kappa_{E}^{(0)})_{hk} \) values for 2-Py (i) + benzene or toluene (j) + ethanol (k) mixtures are negative over entire composition range.

A. Graph Theory and Results

An analysis of molar excess volumes, \(\chi_{ij} \) and molar excess enthalpies, \(\chi_{ij} \) of 2-Py (i) + benzene or toluene (j) binary mixtures have revealed [20,31] that (i) while 2-Py (i) and ethanol exists as a mixture of open and cyclic dimer; benzene or toluene exist as a monomer. Analysis of \(\chi_{ij} \) and \((\kappa_{E})_{hk} \) data of 2-Py (i) + benzene or toluene (j) mixtures have suggested that these binary mixtures are characterized by interactions between \(\pi \)-electron spill over nitrogen and oxygen atoms of 2-Py (i) and \(\pi \)-electron cloud of aromatic ring of benzene or toluene to form 1:1 molecular complex. The thermodynamic properties, \(\chi_{ij} \) (X = H or ko) for these binary mixtures were expressed by Equation (7)

\[
\chi_{ij}^{E}(X = \text{Vor H}) = \frac{x_i x_j \left(1 \chi_{ij}^{(1)} \chi_{ij}^{(2)} \right)}{x_i + x_j \left(1 \chi_{ij}^{(1)} \chi_{ij}^{(2)} \right)} \{1 + x_i \chi_{ij}^{(1)} \chi_{ij}^{(2)} \} \]

Further, thermal dynamical investigations of 2-Py (i) + ethanol (j) mixtures in terms of Graph theory suggests that studied mixtures are characterized by interactions between hydrogen and oxygen atoms of 2-Py (i) and oxygen, hydrogen atoms of ethanol (j). Thermodynamic properties, \(\chi_{ij}^{E}(X = \text{H or ko}) \) for 2-Py (i) + ethanol (j) mixtures were then expressed by Equation (8)

\[
\chi_{ij}^{E}(X = \text{Vor H}) = \left[1 + \frac{\chi_{ij}^{(1)} \chi_{ij}^{(2)}}{\chi_{ij}^{(1)} \chi_{ij}^{(2)}} \right]^{\frac{1}{2}} \chi_{ij}^{(1)} \chi_{ij}^{(2)} \]

International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering Vol:3, No:7, 2009
Fig. 3 Excess isentropic compressibilities, κ_S^E for 2-pyrrolidinone (i) + benzene (j) + ethanol (k) ternary mixture at 308.15 K

Fig. 4 Excess isentropic compressibilities, κ_S^E for 2-pyrrolidinone (i) + toluene (j) + ethanol (k) ternary mixture at 308.15 K

where χ_{ij}, χ_{12} etc. are the molar volume and enthalpy interaction parameters unlike i-j contacts and specific interaction between (i) and (j) components of (i+j) binary mixtures. H and V data predicted for these (i+j) binary mixtures {via Equation (7) and (8)} were in good agreement with their corresponding experimental values, which inturn lends additional support to the assumptions made in deriving Equations (7) and (8).

If a third component like ethanol is added to 2-Py (i) + benzene or toluene (j) binary mixtures, then 2-Py (i) + benzene or toluene (j) + ethanol (k) ternary mixtures formation may be assumed to involve processes (1) the establishment of (a) i-j, (b) j-k, and i-k unlike contacts, (2) formation of unlike contacts would then depolymerize i and k to form their respective monomers, and (3) specific interaction between i, j and k contacts to form i : j, j : k molecular entities. If χ_{ij}, χ_{jk} and χ_{ik} are the molar volume and molar compressibility interaction parameters of unlike (i-j), (j-k) and (i-k) contacts, then change in molar properties, X^E (X = V or κ_S^E) due to processes 1{(a)-(c)} can be expressed by relation [33-35]:

$$\Delta X_1 = \sum_i \frac{x_i x_j v_j}{\sum_i x_i v_i} \chi_{ij}$$

$$\Delta X_2 = \sum_j x_i x_j v_k \chi_{ik}$$

$$\Delta X_3 = \sum_k x_i x_j v_k \chi_{jk}$$

$$\Delta X_4 = x_i x_j v_j \chi_{12}$$

$$\Delta X_5 = x_i x_j x_k v_k \chi_{12}$$

$$\Delta X_6 = x_i x_j x_k v_k \chi_{12}$$

The overall changes in thermodynamic property, X^E (X = V or κ_S^E) due to processes 1(a)-(c), 2 and 3 then can be expressed by Equation (15)

$$X^E = \sum_i \Delta X_i = \sum_i \left[\frac{x_i x_j v_j}{\sum_i x_i v_i} \chi_{ij} + \frac{x_i x_j v_k}{\sum_j x_j v_j} \chi_{ik} + \frac{x_i x_j x_k}{\sum_k x_k v_k} \chi_{12} \right]$$

Because $v_j / v_i = \xi_j / \xi_i$ [36]; Equation (15) reduces to Equation (16)
The parameters were then determined using both experimental and theoretical methods. Even in those cases where agreement between theoretical and experimental values is not good, the predicted values compare well with their corresponding experimental values. This highlights the importance of employing topology of the constituents of ternary mixtures in predicting properties. Examination of Tables II and III respectively reveals that predicted VE values at different compositions agree well with experimental data. This suggests that the use of topology can be a useful tool for predicting properties of complex mixtures.

\[\chi_{ij} \equiv \chi_{12} \quad \chi_{ik} \equiv \chi_{12} \quad \chi_{kk} \equiv \chi^* \], then Equation (16) can be written as

\[X^E = \sum_{i=1}^{n} \Delta x_i \left[\frac{x_i x_j x_k}{x_i + x_j x_k} \right] \left[1 + x_i x_j x_k \right] \]

Equation (17) contains four unknown parameters, $\chi_{ij}, \chi_{ik}, \chi_{jk},$ and χ_{kk}, and we evaluated these parameters by employing the VE data and (κE)ijk data of the investigated ternary mixtures at four compositions. These parameters were then subsequently utilized to predict $X^E (X = V$ or σs) values at other values of x_i and x_j. Such predicted VE data and (κE)ijk values along with χ^*, χ_{ij}^{*} etc. parameters are recorded in Tables II and III respectively.

Table II and III reveal that predicted VE data and (κE)ijk data compare well with their experimental values. This lends additional support to the assumptions made in deriving Equation (17). Even in those cases where agreement between experimental and calculated values is not good, the predicted values are of the same sign as the experimental values. This may be due to the presence of ternary i-j-k contacts which have not been presently considered.

V. CONCLUSION

In conclusion, VE data and (κE)ijk values predicted by employing topology of the constituents of ternary mixtures have revealed that these VE data and (κE)ijk values compare well with their corresponding experimental values; where agreement between theoretical and experimental values is not impressive, the predicted values are of same sign.

ACKNOWLEDGMENT

The authors are grateful to the Head, Chemistry Department and authorities of M.D. University, Rohtak, for providing research facilities.

REFERENCES

[24] J. George and N.V. Sastry, “Densities, viscosities, speeds of sound, and relative permittivities for water + cyclic amides (2-pyrrolidinone, 2-pyrrolidinone, di-
methyl-2-pyrrolidinone, and 1-vinyl-2-propyl) at different temperature,"

isentropic compressibilities of \((x\cdot C6H12 + (1-x) C6H5CH3, \{ x\cdot C6H11 \\
CH3 + (1-x) C6H6\})\) and \((x \cdot C6H11 CH3 + (1-x) C6H5CH3\) from

[27] M. Dzida, A. Zak and S. Ernst, “Thermodynamic and acoustic properties
of binary mixtures of alcohols and alkanes. 1. Speed of sound in (ethanol
+ n-heptane) under elevated pressures,” J. Chem. Thermodyn., vol. 37,
pp. 405-414, 2005.

compressibilities and isochoric heat capacities,” J. Chem. Thermodyn.,

molecular species and molecular interactions that characterize

[33] M. L. Huggins, “The thermodynamic properties of liquids, including
solutions 1. Intermolecular energies in monoatomic liquids and their

[34] M. L. Huggins, “The thermodynamic properties of liquids, including
solutions Part 2. Polymer solutions considered as diatomic systems,”

[35] P. P. Singh and M. Bhatia, Energetics of molecular interactions in binary

aspects of the thermodynamics of binary mixtures of non-electrolytes,”

Vinod Kumar Sharma was born at Amritsar (Punjab),
INDIA on 31st December 1958. He did his B.Sc. from
D.A.V. College, Amritsar in 1977 and M.Sc. from M.D.
University, Rohtak (India) in the year 1979 with
specialization in Physical Chemistry. He did Ph.D.[Thesis
entitled “Molecular interactions in low molecular weight
species”] from the same university in the year 1983.

He joined as a lecturer at Hindu College, Sonipat in 1984. Joined the
Department of Chemistry, M.D. University, Rohtak as senior lecturer in 1985
from where elevated to post of reader in 1997 and as a professor in 2005.

Prof. Sharma has published 70 Research papers in Journals of International
repute. Has attended about 25 National/International conferences and
supervised 5 Ph.D. students and 5 more students are working at present for
the award of Ph.D. degree. His major area of research includes Thermodynamics
of liquid mixtures and Surfactants.