I-Vague Normal Groups

Zelalem Teshome Wale

Abstract—The notions of I-vague normal groups with membership and non-membership functions taking values in an involutory dually residuated lattice ordered semigroup are introduced which generalize the notions with truth values in a Boolean algebra as well as those usual vague sets whose membership and non-membership functions taking values in the unit interval [0, 1]. Various operations and properties are established.

Keywords—Involutory dually residuated lattice ordered semigroup, I-vague set, I-vague group and I-vague normal group.

I. INTRODUCTION

VAGUE groups are studied by M. Demirci[2]. R. Biswas[1] defined the notion of vague groups analogous to the idea of Rosenfeld [4]. He defined vague normal groups of a group and studied their properties. N. Ramakrishna[3] studied vague normal groups and introduced vague normalizer and vague centralizer.

In his paper, T. Zelalem [9] studied the concept of I-vague groups. In this paper using the definition of I-vague groups, we defined and studied I-vague normal groups where I is an involutory DRL-semigroup. To be self contained we shall recall some basic results in [5], [6], [7], [9] in this paper.

II. DUALLY RESIDUATED LATTICE ORDERED SEMIGROUP

Definition 2.1: [5] A system $A = (A, +, 0, ≤, −)$ is called a dually residuated lattice ordered semigroup with I in short DRL-semigroup if and only if

i) $A = (A, +)$ is a commutative semigroup with zero 0;

ii) $A = (A, ≤)$ is a lattice such that $a + (b ∪ c) = (a + b) ∪ (a + c)$ and $a + (b ∩ c) = (a + b) ∩ (a + c)$ for all $a, b, c ∈ A$;

iii) Given $a, b ∈ A$, there exists a least x in A such that $b + x ≥ a$, and we denote this x by $a - b$ (for a given a, b this x is uniquely determined);

iv) $(a - b) ∪ 0 + b ≤ a ∪ b$ for all $a, b ∈ A$;

v) $a - a ≥ 0$ for all $a ∈ A$.

Theorem 2.2: [5] Any DRL-semigroup is a distributive lattice.

Definition 2.3: [10] A DRL-semigroup A is said to be involutory if there is an element $1(≠ 0)$ is the identity w.r.t. $+$ such that

i) $a + (1 - a) = 1 + 1$;

ii) $1 - (1 - a) = a$ for all $a ∈ A$.

Theorem 2.4: [6] In a DRL-semigroup with 1, 1 is unique.

Theorem 2.5: [6] If a DRL-semigroup contains a least element x, then $x = 0$. Dually, if a DRL-semigroup with 1 contains a largest element a, then $a = 1$.

Zelalem Teshome: Department of Mathematics, Addis Ababa University, Addis Ababa, Ethiopia.

E-mail: zelalamwale@yahoo.com or zelalem.wale@gmail.com

Throughout this paper let $I = (I, +, −, ∨, ∩, 0, 1)$ be a dually residuated lattice ordered semigroup satisfying $1 - (1 - a) = a$ for all $a ∈ I$.

Lemma 2.6: [10] Let I be the largest element of I. Then for $a, b ∈ I$

(i) $a + (1 - a) = 1$

(ii) $1 - a = 1 - b ⇐⇒ a = b.$

(iii) $1 - (a ∪ b) = (1 - a) ∩ (1 - b)$.

Lemma 2.7: [10] Let I be complete. If $a_α ∈ I$ for every $α ∈ Δ$, then

(i) $1 - ∨ α a_α = ∩ α (1 - a_α)$.

(ii) $1 - ∩ α a_α = ∪ α (1 - a_α)$.

III. I-VAGUE SETS

Definition 3.1: [10] An I-vague set A of a non-empty set G is a pair (t_A, f_A) where $t_A: G → I$ and $f_A: G → I$ with $t_A(x) ≤ 1 - f_A(x)$ for all $x ∈ G$.

Definition 3.2: [10] The interval $[t_A(x), 1 - f_A(x)]$ is called the I-vague value of $x ∈ G$ and is denoted by $V_A(x)$.

Definition 3.3: [10] Let $B_1 = [a_1, b_1]$ and $B_2 = [a_2, b_2]$ be two I-vague values. We say $B_1 ≥ B_2$ if and only if $a_1 ≥ a_2$ and $b_1 ≥ b_2$.

Definition 3.4: [10] An I-vague set $A = (t_A, f_A)$ of G is said to be contained in an I-vague set $B = (t_B, f_B)$ of G written as $A ⊆ B$ if and only if $t_A(x) ≤ t_B(x)$ and $f_A(x) ≥ f_B(x)$ for all $x ∈ G$. A is said to be equal to B written as $A ≡ B$ if and only if $A ⊆ B$ and $B ⊆ A$.

Definition 3.5: [10] An I-vague set A of G with $V_A(x) = V_A(y)$ for all $x, y ∈ G$ is called a constant I-vague set of G.

Definition 3.6: [10] Let A be an I-vague set of a non-empty set G. Let $A_{α, β} = \{x ∈ G : V_A(x) ≥ [α, β]\}$ where $α, β ∈ I$ and $α ≤ β$. Then $A_{α, β}$ is called the $(α, β)$ cut of the I-vague set A.

Definition 3.7: Let $S ⊆ G$. The characteristic function of S denoted as $χ_S = (t_{χ_S}, f_{χ_S})$, which takes values in I is defined as follows:

$t_{χ_S}(x) = \begin{cases} 1 & \text{if } x ∈ S \\ 0 & \text{otherwise} \end{cases}$

and

$f_{χ_S}(x) = \begin{cases} 0 & \text{if } x ∈ S \\ 1 & \text{otherwise.} \end{cases}$

$χ_S$ is called the I-vague characteristic set of S in I. Thus

$V_{χ_S}(x) = \begin{cases} [1, 1] & \text{if } x ∈ S; \\ [0, 0] & \text{otherwise.} \end{cases}$

Definition 3.8: [10] Let $A = (t_A, f_A)$ and $B = (t_B, f_B)$ be I-vague sets of a set G.

(i) Their union $A ∪ B$ is defined as $A ∪ B = (t_{A∪B}, f_{A∪B})$ where $t_{A∪B}(x) = t_A(x) ∨ t_B(x)$ and
(ii) Their intersection $A \cap B$ is defined as $A \cap B = (t_{A \cap B}, f_{A \cap B})$ where $t_{A \cap B}(x) = t_A(x) \wedge t_B(x)$ and $f_{A \cap B}(x) = f_A(x) \vee f_B(x)$ for each $x \in G$.

Definition 3.9: [10] Let $B_1 = [a_1, b_1]$ and $B_2 = [a_2, b_2]$ be I-vague values. Then

(i) $\text{isup}(B_1, B_2) = [\sup\{a_1, a_2\}, \sup\{b_1, b_2\}]$.

(ii) $\text{infs}(B_1, B_2) = [\inf\{a_1, a_2\}, \inf\{b_1, b_2\}]$.

Lemma 3.10: [10] Let A and B be I-vague sets of a set G. Then $A \cup B$ and $A \cap B$ are also I-vague sets of G.

Let $x \in G$. From the definition of $A \cup B$ and $A \cap B$ we have

(i) $V_{A \cup B}(x) = \text{isup}\{V_A(x), V_B(x)\}$;

(ii) $V_{A \cap B}(x) = \text{infs}\{V_A(x), V_B(x)\}$.

Definition 3.11: [10] Let $\{A_i : i \in \Delta\}$ be a non empty family of I-vague sets of G where

$A_i = (t_{A_i}, f_{A_i})$. Then

(i) $\bigcap_{i \in \Delta} A_i = (\bigwedge_{i \in \Delta} t_{A_i}, \bigvee_{i \in \Delta} f_{A_i})$

(ii) $\bigcup_{i \in \Delta} A_i = (\bigvee_{i \in \Delta} t_{A_i}, \bigwedge_{i \in \Delta} f_{A_i})$

Lemma 4.12: [9] Let A be an I-vague group of a group G. Then $A \subseteq G$ is an I-vague normal group of G if and only if for all $\alpha, \beta \in G$ and $\gamma \leq \delta \leq \beta$

is an I-vague normal group of G.

Theorem 4.10: [9] An I-vague set A of a group G is an I-vague group of G if and only if for all $\alpha, \beta \in G$ with $\alpha \leq \beta$, the I-vague cut $A_{(\alpha, \beta)}$ is a subgroup of G whenever it is non empty.

Theorem 4.11: [9] Let A be an I-vague group of a group G. If $V_A(xy^{-1}) = V_A(x)$ for $y, x \in G$, then $V_A(y) = V_A(y)$. Let A be an I-vague group of a group G. Then $G_A = \{x \in G : V_A(x) = V_A(e)\}$ is a subgroup of G.

V. I-VAGUE NORMAL GROUPS

Definition 5.1: Let G be a group. An I-vague group A of a group G is called an I-vague normal group of G if for all $x, y \in G, V_A(xy^{-1}) = V_A(y)$. Let G be an I-vague normal group of G. If G is abelian, then every I-vague group of G is an I-vague normal group of G.

Lemma 5.2: Let A be an I-vague group of a group G. Suppose that A is an I-vague normal group of G. Let $x, y \in G$. Then $V_A(xy^{-1}) = V_A(yx^{-1})$. Thus $V_A(x) = V_A(yx^{-1})$. Conversely, suppose that $V_A(x) = V_A(yx^{-1})$ for all $x, y \in G$. Then $V_A(xy) = V_A(xy^{-1}) = V_A(yx)$. We have $V_A(xy) = V_A(yx)$. Hence the lemma follows.

Lemma 5.3: Let H be a normal subgroup of G and $[\gamma, \delta] \leq [\alpha, \beta]$ for $\alpha, \beta, \gamma, \delta \in I$ with $\alpha \leq \beta$ and $\gamma \leq \delta$. Then the I-vague set A of G defined by

$A(x) = \begin{cases} [\alpha, \beta] & \text{if } x \in H \\
[\gamma, \delta] & \text{otherwise} \end{cases}$

is an I-vague normal group of G.

Proof: Let H be a normal subgroup of G. By Lemma 4.5, A is an I-vague group of G. We show that $V_A(xy^{-1}) = V_A(xy^{-1})$ for every $x, y \in G$. Let $x, y \in G$. If $x \in H$, then $xy^{-1} \in H$. Thus $V_A(xy^{-1}) = V_A(xy^{-1})$. If $x \notin H$, then $xy^{-1} \notin H$. Thus $V_A(xy^{-1}) = V_A(xy^{-1})$. Hence $V_A(xy) = V_A(xy^{-1})$ for every $x, y \in G$. Therefore A is an I-vague normal group of G.

Lemma 5.4: Let $H \neq \emptyset$. The I-vague characteristic set of H, χ_n is an I-vague normal group of G if H is a normal subgroup of G.

Proof: Suppose that H is a normal subgroup of G. By Lemma 5.3, χ_n is an I-vague normal group of G since

$V_{\chi_n}(x) = \begin{cases} [1, 1] & \text{if } x \in H \\
[0, 0] & \text{otherwise} \end{cases}$

Conversely, suppose that χ_n is an I-vague normal group of G. We show that H is a normal subgroup of G. By Lemma 4.6, H is a subgroup of G. Let $y \in H$ and $x \in G$. Therefore χ_n is an I-vague normal group of G.
Remark

Proof: of G as we have seen in I-vague groups [9].

Let us define $A \in \mathcal{B}$ be a constant I-vague group of G. Then $A \subseteq V$ by lemma 4.8.

Theorem 5.5: Let $A = \bigcap_{i \in \Delta} A_i$. Then A is an I-vague normal group of G.

Proof: Let A be an I-vague normal group of G and B be a constant I-vague group of G. Then $A \subseteq B$ is an I-vague normal group of G.

Theorem 5.6: Let A be an I-vague normal group of G and B be a constant I-vague group of G. Then $A \subseteq B$ is an I-vague normal group of G.

Proof: Let A be an I-vague normal group of G and B be a constant I-vague group of G. Hence $A \subseteq B$ is an I-vague normal group of G.

Theorem 5.7: Let A be an I-vague normal group of G.

Proof: Let A be an I-vague normal group of G as we have seen in I-vague groups [9].

Theorem 5.8: An I-vague set A of a group G is an I-vague normal group of G if and only if for all $\alpha, \beta \in I$ with $\alpha \leq \beta$, the I-vague cut $A_{(\alpha, \beta)}$ is a normal subgroup of G whenever it is non-empty.

Proof: By theorems 4.10, an I-vague set A of a group G is an I-vague normal group of G if and only if for all $\alpha, \beta \in I$ with $\alpha \leq \beta$, the I-vague cut $A_{(\alpha, \beta)}$ is a normal subgroup of G whenever it is non-empty.

Suppose that A is an I-vague normal group of G. Consider $A_{(\alpha, \beta)}$. Let $y \in A_{(\alpha, \beta)}$ and $x \in G$. We prove that $x y x^{-1} \in A_{(\alpha, \beta)}$.

Now we prove that $x y x^{-1} \in H$.

Proof: We prove that $A_{(\alpha, \beta)}$ is a normal subgroup of G.

Hence $A_{(\alpha, \beta)}$ is a normal subgroup of G.

Hence the lemma holds true.

Theorem 5.9: If A and B are I-vague normal groups of G, then $A \subseteq B$ is also an I-vague normal group of G.

Proof: We prove that $A_{(\alpha, \beta)}$ is a normal subgroup of G and B is a constant I-vague group of G. Then $A \subseteq B$ is an I-vague normal group of G.

Hence $A_{(\alpha, \beta)}$ is a normal subgroup of G.

Hence the theorem follows.

Theorem 5.10: If A is an I-vague normal group of G, then G_A is a normal subgroup of G.

Proof: We prove that G_A is a normal subgroup of G.

By lemma 4.12, $G_A = \{x \in G : V_A(x) = V_A(e)\}$ is a subgroup of G. Now we show that $x y x^{-1} \in G_A$ for all $x, y \in G_A$.

Thus G_A is a normal subgroup of G.

Theorem 5.11: Let A be an I-vague group of G. Then A is an I-vague normal group if G.

Proof: We prove that $A_{(\alpha, \beta)}$ is a normal subgroup of G and B is an I-vague normal group of G.

Hence $A_{(\alpha, \beta)}$ is a normal subgroup of G.

Hence $A_{(\alpha, \beta)}$ is a normal subgroup of G.

Hence $A_{(\alpha, \beta)}$ is a normal subgroup of G.

Conversely, suppose that for all $\alpha, \beta \in I$ with $\alpha \leq \beta$, the non empty set $A_{(\alpha, \beta)}$ is a normal subgroup of G.

Now it remains to prove that $V_A(y) = V_A(x y^{-1})$ for all $x, y \in G$.

Hence the theorem follows.

Theorem 5.12: If A is an I-vague normal group of G, then G_A is a normal subgroup of G.

Proof: We prove that G_A is a normal subgroup of G.

By lemma 4.12, $G_A = \{x \in G : V_A(x) = V_A(e)\}$ is a subgroup of G. Now we show that $x y x^{-1} \in G_A$ for all $x, y \in G_A$.

Thus G_A is a normal subgroup of G.

Hence the theorem follows.
We have

By definition, \(A \) is an I-vague normal group of \(G \).

Conversely, assume that \(N(A) = G \). For all \(y \),

Let \(N \). Then \(a^{-1} \in N(A) \) and \(ab \in N(A) \).

Let \(a \in N(A) \). Then \(V_a(a^{-1}x) = V_a(x) \) for all \(x \in G \).

Hence \(V_a(a^{-1}x) = V_a(x) \), so \(a^{-1} \in N(A) \).

Let \(a, b \in N(A) \). Then

Then \(ab \in N(A) \). Therefore \(N(A) \) is a subgroup of \(G \).

(iii) Suppose that \(A \) is an I-vague normal group of \(G \).

We prove that \(N(A) = G \).

Let \(a \in G \). Since \(A \) is an I-vague normal group of \(G \),

\(V_a(a^{-1}x) = V_a(x) \) for all \(x \in G \). It follows that \(a \in N(A) \).

Hence \(G \subseteq N(A) \).

Since \(N(A) \subseteq G \), \(G = N(A) \).

Conversely, assume that \(N(A) = G \). For all \(a \), \(x \in G \),

\(V_a(a^{-1}x) = V_a(x) \).

By definition, \(A \) is an I-vague normal group of \(G \).

Therefore \(V_a(x) = V_a(a^{-1}x) \).

Hence \(V_a(x) = V_a(a^{-1}x) \) for all \(x \in G \) and \(x \in G \).

For \(y \in G \), \(V_a(xy^{-1}) \geq \inf \{ V_a(x), V_a(yx^{-1}) \} \).

Hence \(V_a(xy^{-1}) \geq V_a(y) \) for \(y \in G \) and \(x \in G \).

Thus \(V_a(xy^{-1}) \geq V_a(y) \) where \(x \in G \) and \(y \in G \). Put \(xy^{-1} \) instead of \(y \).

We have \(V_a(xy^{-1}x) \geq V_a(yx^{-1}) \) and hence \(V_a(y) \geq V_a(xy^{-1}) \).

Therefore \(V_a(y) = V_a(xy^{-1}) \) for each \(y \in G \).

Thus \(x \in N(A) \). Therefore \(GVA \subseteq N(A) \).

Since \(GVA \) is a subgroup of \(G \) and \(GVA \subseteq N(A) \), \(GVA \) is a subgroup of \(N(A) \).

Now we show that \(ygy^{-1} \in GVA \) for all \(a \in GVA \) and for all \(y \in N(A) \).

Since \(y \in N(A) \), \(V_a(ygy^{-1}) = V_a(a) \). Since \(a \in GVA \),

\(V_a(a) = V_a(e) \). Hence \(V_a(ygy^{-1}) = V_a(e) \), so \(ygy^{-1} \in GVA \). Therefore \(GVA \) is a normal subgroup of \(N(A) \).

Definition 5.15: Let \(A \) be an I-vague group of a group \(G \). Then the set

\(C(A) = \{ a \in G : V_A([a,x]) = V_A(e) \} \) for all \(x \in G \) is called an I-vague centralizer of \(A \).

Theorem 5.16: Let \(A \) be an I-vague group of a group \(G \). Then \(C(A) \) is a normal subgroup of \(G \).

Proof: Let \(A \) be an I-vague group of \(G \). We prove that \(C(A) = \{ a \in G : V_A([a,x]) = V_A(e) \} \) for all \(x \in G \) is a normal subgroup of \(G \).

Step(1) We show that \(a \in C(A) \) implies \(V_A(ax) = V_A(ax) \) for all \(x \in G \).

Let \(a \in C(A) \). Then \(V_A([a,x]) = V_A(e) \) for all \(x \in G \).

\(V_A([a,x]) = V_A(e) \Rightarrow V_A(a^{-1}xax) = V_A(e) \)

\(\Rightarrow V_A(a^{-1}xax) = V_A(e) \)

\(\Rightarrow V_A(a^{-1}xax) = V_A(e) \) by thm 4.11

\(\Rightarrow V_A(ax) = V_A(ax) \).

Therefore \(V_A(ax) = V_A(ax) \) for all \(x \in G \).

Step(2) We show that \(a \in C(A) \) implies \(V_A([x,a]) = V_A(e) \) for all \(x \in G \).

\(V_A([x,a]) = V_A(e) \) by step(1)

\(V_A((x^{-1}ax)a^{-1}) = V_A((x^{-1}ax)a^{-1}) \)

\(V_A((x^{-1}ax)a^{-1}) = V_A((x^{-1}ax)a^{-1}) \)

\(V_A([a,x]) = V_A(e) \) for each \(a \in C(A) \) and for all \(x \in G \).

Step(3) We prove that \(C(A) \) is a subgroup of \(G \).

We show that (i) \(a \in C(A) \) implies \(a^{-1} \in C(A) \).

(ii) \(a, b \in C(A) \) implies \(ab \in C(A) \).

Now proof of (i)

For all \(x \in G \), \(V_A([a^{-1},x]) = V_A(ax^{-1}a^{-1}x) \)

\(= V_A(x^{-1}ax) \) by step(1)

\(= V_A(x^{-1}ax) \)

\(= V_A([a,x]) = V_A(e) \).
\[V_A(g^{-1}a^{-1}gaa^{-1}x^{-1}g^{-1}agx) = V_A(g, a)g^{-1}(gx)^{-1}agx \]
\[= V_A([g, a][a, gx]) \geq \inf\{V_A([g, a]), V_A([a, gx])\} = \inf\{V_A(e), V_A(e)\} = V_A(e). \]

Hence \(V_A([g^{-1}ag, x]) \geq V_A(e). \)

Since \(V_A(e) \geq V_A([g^{-1}ag, x]) \), \(V_A([g^{-1}ag, x]) = V_A(e) \).

This implies \(g^{-1}ag \in C(A) \).

From step(3) and step(4), we have \(C(A) \) is a normal subgroup of \(G \).

Theorem 5.17: Let \(A \) be an I-vague normal group of a group \(G \). Then \(GV_A \) is a subgroup of \(C(A) \).

Proof: Let \(A \) be an I-vague normal group of a group \(G \). We prove that \(GV_A \) is a subgroup of \(C(A) \).

Let \(x \in GV_A \). Then \(V_A(x) = V_A(e) \). Consider \(V_A([x, y]) \) for each \(y \in G \).

\[V_A([x, y]) = V_A(x^{-1}(y^{-1}xy)) \geq \inf\{V_A(x^{-1}), V_A(y^{-1}xy)\} \]
\[= \inf\{V_A(x), V_A(x)\} \]
\[= V_A(x) = V_A(e). \]

Hence \(V_A([x, y]) \geq V_A(e) \).

Since \(V_A(e) \geq V_A([x, y]) \), \(V_A([x, y]) = V_A(e) \).

By the definition of \(C(A) \), \(x \in C(A) \).

Thus \(GV_A \subseteq C(A) \). Since \(GV_A \) is a subgroup of \(G \), \(GV_A \) is a subgroup of \(C(A) \).

ACKNOWLEDGMENT

The author would like to thank Prof. K. L. N. Swamy and Prof. P. Ranga Rao for their valuable suggestions and discussions on this work.

REFERENCES

