Abstract—The Helmholtz equation often arises in the study of physical problems involving partial differential equation. Many researchers have proposed numerous methods to find the analytic or approximate solutions for the proposed problems. In this work, the exact analytical solutions of the Helmholtz equation in spherical polar coordinates are presented using the Nikiforov-Uvarov (NU) method. It is found that the solution of the angular eigenfunction can be expressed by the associated-Legendre polynomial and radial eigenfunctions are obtained in terms of the Laguerre polynomials. The special case for \(k=0 \), which corresponds to the Laplace equation is also presented.

Keywords—Helmholtz equation, Nikiforov-Uvarov method, exact solutions, eigenfunctions.

I. INTRODUCTION

THE Helmholtz equation is used to describe many mathematical and physical applications including electromagnetics, wave propagation [1], heat conduction [2], acoustic cavity problem [3] and many others. It has also been used to describe the vibration of a structure [4] and the scattering of a wave [5]. Many different techniques such as the finite difference method [6], the homotopy perturbation method [7], [8] and the variational iteration method [9] have been introduced to solve the Helmholtz equation numerically and analytically. The NU method has been introduced for solving the hypergeometric type second-order differential equations [10] appeared in the time-independent problems. Recently, this method has been used to solve Schrödinger equation for some well known potentials [11]–[16], Dirac, Klein–Gordon equations for Coulomb potential [17], [18] and some physical potentials such as Woods-Saxon potential [19], Poschl-Teller potentials [20], Hulthen potentials [21], the Manning-Rosen potential [22], and the Eckart potential [23]-[25].

In the present work, our main objective is to solve Helmholtz equation in spherical polar coordinates by the NU method. This paper is organized as follows: In Section II, we briefly introduce the NU method. We consider the separation of variables to obtain the eigenfunctions of the Helmholtz equation in spherical polar coordinates in Section III. Finally, conclusions are drawn in Section IV.

II. NIKIFOROV-UVAROV METHOD

The NU Method [26] is based on the solutions of general second-order linear differential equation with special functions. It has been extensively used to solve the non relativistic Schrödinger equation and Schrödinger-like equations. This method in general reduces the second-order linear differential equation to the following form

\[
\frac{d^2\psi(s)}{ds^2} + \frac{\sigma(s)}{\sigma(s)} \frac{d\psi(s)}{ds} + \frac{\sigma(s)}{\sigma(s)} \psi(s) = 0
\] (1)

where \(\sigma(s) \) and \(\bar{\sigma}(s) \) are polynomials, at most second degree, and \(\tau(s) \) is a polynomial, at most first degree. To find the particular solution of (1), one can use the following form

\[
\psi_n(s) = \phi(s) y_n(s)
\] (2)

It reduces to an equation of hypergeometric type

\[
\sigma(s) \frac{d^2 y_n(s)}{ds^2} + \tau(s) \frac{dy_n(s)}{ds} + \lambda y_n(s) = 0
\] (3)

where \(\lambda \) is a constant given in the form

\[
\lambda = \lambda_n = -n\tau(s) - \frac{n(n-1)}{2} \sigma''(s), \quad n = 1, 2, 3, ...
\] (4)

\(\psi(s) \) is defined as logarithmic derivative

\[
\frac{\psi(s)}{\phi(s)} = \frac{\pi(s)}{\sigma(s)}
\] (5)

\(y_n(s) \) is the hypergeometric-type function whose polynomials solutions are given by Rodrigues relation

\[
y_n(s) = \frac{B_n}{\rho(s)} \frac{d^n}{ds^n} \left[\rho^n(s) \psi(s) \right]
\] (6)

S. Laachir is with L’Académie régionale de l’éducation et de la formation de la région du Grand Casablanca, Morocco Lycée qualifiant Zineb Ennefzaouia (e-mail: saidlaachir@yahoo.fr)

A. Laaribi is with L’Académie régionale de l’éducation et de la formation de la région du Grand Casablanca, Morocco Lycée qualifiant Zineb Ennefzaouia.
where B_n is the normalization constant and $\rho(s)$ is the weight function satisfying

$$\frac{d}{ds}[\sigma(s)p(s)] = \tau(s)p(s)$$

where $\tau(s) = \tau(s) + 2\pi(s)$ satisfies the condition $\tau'(s) < 0$ [26].

The function $\pi(s)$ and the parameter λ, required for this method, are defined as follows:

$$\pi(s) = \frac{\sigma - \tau}{2} \pm \sqrt{\left(\frac{\sigma - \tau}{2}\right)^2 - \sigma + \kappa\sigma}$$

$$\lambda = \kappa + \pi'(s)$$

In order to find the value of κ, the expression under the square root must be square of polynomial

III. HELMHOLTZ EQUATION

Let us consider the Helmholtz equation,

$$\nabla^2 U + k^2 U = 0$$

which represents the time-independent linear partial differential equation, results from applying the technique of separation of variables to reduce the complexity of the analysis. The interpretation of the unknown U depends on what the equation models. The most common areas are wave propagation problems and quantum mechanics, in which case U is the amplitude of a time-harmonic wave and the orbitals for an energy state, respectively.

Here ∇^2 is the Laplacian and k is the wavenumber. In spherical polar coordinates, (1) can be written

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial U}{\partial r}\right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial U}{\partial \theta}\right) + \frac{1}{r^2 \sin^2 \theta \cos \phi} \frac{\partial^2 U}{\partial \phi^2} + k^2 U = 0$$

We seek the solutions to (11) in the form

$$U = R(r)T(\theta)\Phi(\phi)$$

Substituting (12) into (11) and dividing by U gives

$$\frac{d^2 R(r)}{dr^2} + \frac{2}{r} \frac{dR(r)}{dr} + \left[k^2 - \ell(\ell + 1)\right] R(r) = 0$$

$$\frac{d^2 T(\theta)}{d\theta^2} + \frac{\cos \theta}{\sin \theta} \frac{dT(\theta)}{d\theta} + \left[\ell(\ell + 1) - \frac{m^2}{\sin^2 \theta}\right] T(\theta) = 0$$

The function $\tau(s)$ which has a negative derivative as follows:

$$\tau(s) = -2(m + 1)s; \tau'(s) = -2(m + 1) < 0. \quad \text{for } \kappa_1$$

According to (4) and (9) the values n can be obtained

$$n = \ell - m$$

From (5) and (7), we obtain

$$\Phi(s) = (1 - s^2)^{m/2}$$
\[\rho(s) = (1 - s^2)^m \]
(24)

Inserting (24) into (6), \(y_n(s) \) can be found as follows:

\[y_n(s) = B_n(1 - s^2)^{-m} \frac{d^n}{ds^n} \left[(1 - s^2)^{n+m} \right] \]
(25)

The polar part of the (12) is found to be

\[T_n(\theta) = C_n(1 - s^2)^{-m/2} \frac{d^{-m}}{ds^{-m}} \left[(1 - s^2)^{\ell} \right] \]
(26)

where \(C_n \) is the normalization constant

\[C_n = \sqrt{\frac{(2n + 2m + 1)!}{2(n + 2m)!}} \]
(27)

and \(T_n(\theta) \) is for the associated-Legendre function \(P_m^\ell(s) \).

Thus the angle part solution of the Helmholtz equation can be written as

\[T(\theta) = \sqrt{\frac{(2n + 2m + 1)!}{2(n + 2m)!}} P_m^\ell(\cos \theta) \]
(28)

B. Solutions of Radial Equation

We now focus on the radial eigenfunction of the Helmholtz equation, with change variable \(r = s \). Equation (13) takes the form

\[\frac{d^2R(s)}{ds^2} + \frac{2}{s} \frac{dR(s)}{ds} + \frac{1}{s^2} \left[k^2 s^2 - \ell(\ell + 1) \right] R(s) = 0 \]
(29)

By comparing (29) with (1) we have

\[\tau(s) = 2, \sigma(s) = s, \quad \sigma(s) = k^2 s^2 - \ell(\ell + 1) \]
(30)

Using (8), \(\pi(s) \) can be written as

\[\pi(s) = -\frac{1}{2} \left[ik s + \frac{1}{2} \sqrt{1 + 4(\ell + 1)} \right] \quad \text{for } k = ik \sqrt{1 + 4(\ell + 1)} \]
(31)

\[\pi(s) = -\frac{1}{2} \left[-ik s + \frac{1}{2} \sqrt{1 + 4(\ell + 1)} \right] \quad \text{for } k = -ik \sqrt{1 + 4(\ell + 1)} \]
(32)

Making the appropriate choice for the polynomials as

\[\pi(s) = -\frac{1}{2} \left[-ik s + \frac{1}{2} \sqrt{1 + 4(\ell + 1)} \right] \]
(33)

gives the \(\tau(s) \) function

\[\tau(s) = 1 + \left[-2i k s + \sqrt{1 + 4(\ell + 1)} \right] \]
(34)

\[\tau'(s) = -2i k s < 0 \]
(35)

The corresponding weight function \(\rho(s) \) has the form

\[\rho(s) = e^{-2i k s + 2\ell} \]
(36)

Using the condition (5) \(\phi(s) \) is given by

\[\phi(s) = e^{-i k s} \]
(37)

By substituting (36) into the Rodrigues relation (6) we obtain

\[y_n(s) = C_n L_n^{2\ell+1}(2i s) \]
(38)

where \(L_n(s) \) being the Laguerre polynomials and \(C_n \) is the normalization constant.

The radial part of the eigenfunction of the Helmholtz equation has the form

\[R(s) = N e^{-i k s} L_n^{2\ell+1}(2i s) \]
(39)

with \(N \) is a new normalization factor.

The associated Laplace equation solutions are obtained by setting \(k = 0 \) in (29). The \(T(s) \) solution is unchanged but the solution (39) becomes

\[R(s) = N s^\ell \]
(40)

The total eigenfunction of the Helmholtz equation can be obtained from the combined solutions of (16), (28) and (39) as

\[U(s, \theta, \phi) = N \sqrt{\frac{(2n + 2m + 1)!}{4\pi(n + 2m)!}} e^{-i(\kappa - m\phi)} P_m^\ell(\cos \theta) L_n^{2\ell+1}(2i s) \]
(41)

IV. Conclusion

We have obtained the exact solutions of the Helmholtz equation using the NU method. We have found that the angular and radial eigenfunctions can be expressed in terms of the associated-Legendre and Laguerre polynomials respectively. In the case of \(k = 0 \) (Laplace equation), the radial solutions are given by (40). It may be concluded that the NU method is simple and powerful in finding the analytical solutions for a wide class of such problems.
REFERENCES

