Treatment of Cutting Oily-Wastewater by Sono Fenton Process: Experimental Approach and Combined Process

P. Painmanakul, T. Chintateerachai, S. Lertlapwasin, N. Rojvilavan, T. Chalermsinsuwan, N. Chawaloephonsiya, O. Larpparisudthi

Abstract—Conventional coagulation, advance oxidation process (AOPs), and the combined process were evaluated and compared for its suitability to treat the stabilized cutting-oil wastewater. The 90% efficiency was obtained from the coagulation at Al₂(SO₄)₃ dosage of 150 mg/L and pH 7. On the other hands, efficiencies of AOPs for 30 minutes oxidation time were 10% for acoustic oxidation, 12% for acoustic oxidation with hydrogen peroxide, 76% for Fenton, and 92% sono-Fenton processes. The highest efficiency for effective oil removal of AOPs required large amount of chemical. Therefore, AOPs were studied as a post-treatment after conventional separation process. The efficiency was considerable as the effluent COD can pass the standard required for industrial wastewater discharge with less chemical and energy consumption.

Keywords—Cutting oily-wastewater, Advance oxidation process, Sono-Fenton, Combined process.

I. INTRODUCTION

Cutting oil is mostly used in metalworking industries; for example, cooling, lubrication, welding resistance, and disposal of metal chip. Oil waste emitted from industry is normally in form of oil-in-water emulsion with surfactant, which could become fuming and odorous. This emulsion normally contains high stability with small oil-droplets and difficult to treat by a conventional physical process. An effective technique is required in order to separate oil-droplets from the oily wastewater. Physical processes are widely used for oil removal, e.g. coalescer, flotation, coagulation, and membrane processes [1]-[4]. Moreover, other advanced separation and destruction processes such as dissolved air flotation, acoustic oxidation, and thermal oxidation, for oily wastewater were proposed by various researchers [5]-[9]. Oxidation processes, for example, chemical oxidation, acoustic oxidation, and advance oxidation processes, have been studied for its application such as treatment of non-degradable materials like aromatic carbon constituents. Especially advance oxidation processes which have the high efficiency for oil separation. The main concept of the processes is to generate hydroxyl radical (·OH), which is a very strong oxidant, to virtually oxidize any compound present in the water matrix, often at a diffusion controlled reaction speed. Consequently, ·OH reacts unselectively once formed. Contaminants will be quickly and efficiently fragmented and converted into small inorganic molecules.

Fenton process is one of the advance oxidation processes using FeSO₄, known as Fenton’s reagent, to catalyze hydroxyl radical production. In addition, the treatment efficiency of Fenton can be enhanced by ultrasonic irradiation, which is called as sono-Fenton process. In this study, four different advance treatment processes were applied to separate cutting-oil including acoustic oxidation, chemical oxidation, Fenton, and sono-Fenton processes. Effects of size, concentration, and component of cutting oil to the treatment efficiency were also investigated. Moreover, impacts of different operating factors (i.e. pH, H₂O₂ concentration, Fe⁷⁺/H₂O₂ ratio, and initial oil concentration) were analyzed on the efficiency of cutting oil removal. In addition, the synergistic effects between acoustic oxidation and Fenton process were studied.

II. EXPERIMENTAL PROCEDURE

A. Sample Preparation

Cutting-oil wastewater was synthesized by diluting 1 mL of concentrated cutting oil (Castrol Cleancut) in 1 L of tap water. Characteristics of the wastewater are shown in Table I and the size distribution of oil droplets is exhibited in Fig. 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>1 g/l of cutting oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>7.4</td>
</tr>
<tr>
<td>Conductivity</td>
<td>(µs/cm)</td>
<td>275</td>
</tr>
<tr>
<td>Turbidity</td>
<td>(NTU)</td>
<td>1,356</td>
</tr>
<tr>
<td>COD</td>
<td>mg/l</td>
<td>3,051</td>
</tr>
<tr>
<td>TDS</td>
<td>mg/l</td>
<td>183</td>
</tr>
</tbody>
</table>

TABLE I

CHARACTERISTICS OF THE CUTTING OIL EMULSION

Pisut Painmanakula, Thawatchai Chintateerachai, Supanid Lertlapwasin, Nusara Rojvilavan, and On-anong Larpparisudthi are with the Department of Environmental Engineering, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.

Pisut Painmanakula and Nattawin Chawaloephonsiya are in the International Postgraduate Programs in Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.

Pisut Painmanakula, Tanun Chalermsinsuwan, Nattawin Chawaloephonsiya, and On-anong Larpparisudthi are with the Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand (Corresponding author: Pisut Painmanakula Tel: +662-2186671; e-mail: pisut.p@chula.ac.th, pisut114@hotmail.com).
D. Advance Oxidation Processes

Fenton and sono-Fenton processes were investigated in 100-ml beakers. The irradiation was performed at power input and frequency of 400 W and 28 kHz, respectively. The optimum hydrogen peroxide and ferrous ion dosages were either experimentally determined or obtained from previous literatures [10]. Samples were collected at 30 and 60 minutes of reaction time and analyzed for COD value.

E. Analytical Method

Analytical parameters in this study were determined by methods displayed in Table II.

\[
\text{%COD removal} = 100\% \times \left(1 - \frac{\text{COD}_t}{\text{COD}_0}\right)
\]

where COD_t = COD value at time t, mg/L
COD₀ = Initial value of COD, mg/L

III. RESULTS AND DISCUSSION

A. Treatment Processes

Numerous separation techniques were applied for removal of cutting-oil wastewater in several literatures. Furthermore, several destruction techniques were investigated in the mentioned conditions. The description and efficiency of these processes are displayed in Table III.
TABLE III
TECHNOLOGIES PROPOSED TO TREAT CUTTING OIL WASTEWATER

<table>
<thead>
<tr>
<th>Separation processes</th>
<th>Technique</th>
<th>Description</th>
<th>Efficiency</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coagulation</td>
<td>Using metal salts to destabilize oil droplets</td>
<td>90 - 95%</td>
<td>[11]</td>
<td></td>
</tr>
<tr>
<td>Coalescer</td>
<td>Enhance the separation of oil droplets by enlarging droplets’ size</td>
<td>30%</td>
<td>[4]</td>
<td></td>
</tr>
<tr>
<td>Dissolved Air</td>
<td>Increase the rising rate of droplets by reducing density of droplets</td>
<td>80%</td>
<td>[12]</td>
<td></td>
</tr>
<tr>
<td>Flotation (DAF)</td>
<td>Similar to coagulation but metal ions were supplied by electrochemical reaction</td>
<td>90%</td>
<td>[6]</td>
<td></td>
</tr>
<tr>
<td>Electrocoagulation</td>
<td>Similar to coagulation but metal ions were supplied by electrochemical reaction</td>
<td>95%</td>
<td>[7], [8]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Destruction processes</th>
<th>Technique</th>
<th>Description</th>
<th>Operating condition</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustic oxidation</td>
<td>Use of ultrasonic irradiation to break down oil droplets</td>
<td>Irradiate the sample using 100, 150, 200, 300, and 400 W power input</td>
<td>~ 0</td>
<td></td>
</tr>
<tr>
<td>Acoustic oxidation + H₂O₂</td>
<td>Use of hydroxyl radicals (·OH) to enhance the rate of acoustic oxidation</td>
<td>Ultrasonic was irradiated using 400 W power input and added 14 g/L of H₂O₂</td>
<td>13.6%</td>
<td></td>
</tr>
<tr>
<td>Acoustic oxidation + air bubbling</td>
<td>Use of air bubble to enhance the rate of acoustic oxidation</td>
<td>Ultrasonic was irradiated using 400 W power input and supplied oxygen by air bubbling rate of 0.3 L/min</td>
<td>4.5%</td>
<td></td>
</tr>
</tbody>
</table>

It can be seen that separation processes can provide high removal efficiency but the effluent COD still exceeded the industrial effluent standard of 120 mg/L. On the other hand, destruction processes had low efficiency (less than 15%), which is not sufficient to treat the wastewater. AOPs were therefore studied for treatment of cutting oil wastewater.

B. Advance Oxidation Processes (AOPs)

1. Effect of pH value

In this part, effects of pH on COD removal efficiency were investigated in the similar condition as in Seo et al. [10], i.e. 3 g/L of FeSO₄ and 14 g/L of H₂O₂. The results are displayed in Fig. 3 showing the 75.1% and 94.3% removal efficiency can be achieved at the acidic pH range (pH = 1.0 - 2.0). At pH 2.0, the efficiency was obviously higher when peroxide is absent due to the precipitation of iron. The pH, therefore, should be retained extremely low for (1) prevent the formation of ferrous and ferric hydroxide those induces sweep flocculation, and (2) the radical-production of Fenton chemistry prefers lower pH.

2. Effect of Fe²⁺:H₂O₂ ratio

The sono-Fenton process was applied for treating 1 g/l cutting oil wastewater with initial pH of 1.7. The optimum ratio of ferrous ion to hydrogen peroxide was determined for a constant 14 g/L H₂O₂ and varied Fe²⁺ concentrations. Fig. 5 exhibits the results indicating the increase of efficiency at Fe²⁺/H₂O₂ of 1:143 until reaching the highest value of 91.3% at Fe²⁺/H₂O₂ of 1:28 (i.e. 500 mg/L Fe²⁺ and 14 g/L H₂O₂). The efficiency was slightly decreased at the Fe²⁺/H₂O₂ of 1:19. The reason responsible for poor COD removal at low Fe²⁺/H₂O₂ was no catalytic decomposition of hydrogen peroxide occurs due to inadequate amount of Fe²⁺ [13]. On the other hand, high dosage of Fe²⁺ could negatively affect the oxidation process since Fe²⁺ is a known radical scavenger, which could react with the hydroxyl radical according to the following reaction [13]:

\[
Fe^{2+} + \cdot OH \rightarrow Fe^{3+} + OH^-
\]

C. Analyze of Synergistic Effects

Synergistic effects are examined by comparing the efficiency from kinetic constants between two processes (i.e. Fenton and sono-fenton) at 10.5 g/L of H₂O₂ and 375 mg/L of Fe²⁺ without ultrasonic irradiation. The COD reduction is exhibited in Fig. 5.
The synergistic index can be calculated by the following equations.

\[f = \frac{k_{\text{sono-Fenton}}}{k_{\text{Fenton}} + k_{\text{Acoustic oxidation}}} \]

\[f = \frac{0.123}{(0.074 + 0.0)} = 1.66 \]

D. AOPs Applied as Post-Treatment Process

The study of Fenton and sono-Fenton as the post-treatment of separation processes were conducted for 0.1% cutting oil wastewater. The constant Fe\(^{2+}/\text{H}_2\text{O}_2\) ratio of 1:28 was applied. The remaining COD at 30 and 60 minutes after the oxidation is shown in Fig. 6. Similar residual COD was obtained from all three processes, which can pass the effluent standard. Nevertheless, the 1.28 Fe\(^{2+}/\text{H}_2\text{O}_2\) ratio was still high causing a large amount of chemical consumption. Effects of Fe\(^{2+}/\text{H}_2\text{O}_2\) ratios on the oil removal were then examined.

E. Effect of Fe\(^{2+}/\text{H}_2\text{O}_2\) ratio in Fenton process

Effects of Fe\(^{2+}/\text{H}_2\text{O}_2\) ratios in the range of 2.5 - 25 on efficiencies were investigated as exhibited in Fig. 7. As can be seen, the effluent COD was rapidly decreased in the first 15 minutes. The generated Fe\(^{2+}\) can effectively react with \text{H}_2\text{O}_2\ producing hydroxyl radical that can oxidize stabilized oil-droplets. The highest treatment efficiency was obtained at the F/H ratio of 1:10, which corresponded to other works [14], [15]. The appropriate ratio of supplied \text{H}_2\text{O}_2\ to the oil concentration is required for an effective separation with less chemical and energy consumptions.

Fig. 5 Comparison between COD reduction Acoustic Oxidation, Fenton and Sono-Fenton

Fig. 6 Remaining COD for AOPs as a post-treatment process at 30 and 60 minutes

Fig. 7 Effect of Fe\(^{2+}/\text{H}_2\text{O}_2\) ratio on COD remaining

F. Combined Process

From previous studies, the treatment of 1% cutting-oil wastewater by the sono-Fenton process (Fig. 8) had a drawback from the high consumption of chemical and energy. Therefore, the sono-Fenton should be applied as a post-treatment process after separation processes, which normally contain 90% removal efficiency. The effluent COD can pass the industrial standard with less chemical and energy usages. The schematic diagram of this concept is depicted in Fig. 9.

Fig. 8 Schematic diagrams of sono-Fenton process
Influent → Separation processes with 90% of efficiency (coagulation/ultrafiltration) → Fenton reactor (pH = 1.7) → Effluent

COD = 54 mg/L

COD = 3,051 mg/L

1 g/l of cutting oil

0.1 g/l of cutting oil

Fe\(^{2+}/H_2O_2\) = 1:10
Fe\(^{2+}\) = 500 mg/l
H_2O_2 = 5 g/l

Fig. 9 Schematic diagrams of combined processes

IV. CONCLUSION

In this study, the possibility of using sono-Fenton processes for cutting oil wastewater treatment was assessed. Effects of various parameters on the oil removal were investigated, including pH, H_2O_2 concentration, Fe\(^{2+}/H_2O_2\) ratio, and initial oil concentration. Conclusions can be drawn as following.

- Optimal pH for sono-Fenton process is 1.0 - 1.7, which can prevent the Fe(OH)_2 precipitation and encourage the hydroxyl radical production.
- The ferrous ion to hydrogen peroxide ratio can affect the cutting oil removal efficiency. The optimal Fe\(^{2+}/H_2O_2\) ratios for 1% and 0.1% cutting oil wastewater were 1:28 and 1:10, respectively. Conventional separation processes were therefore required to reduce the consumption of chemical and energy with effective treatment performance.

Numerous studies should be further conducted, for instance, (1) continuous system experiment, (2) electrocoagulation with iron electrodes and electro-Fenton for cutting oil removal, and (3) treatment of different types of oily wastewater by combined processes.

ACKNOWLEDGMENT

This work was financed by the Chulalongkorn University Fund, Thailand Research Fund (TRF), Center of Excellence of Environmental and Hazardous Waste Management (EHW), and Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University. Moreover, the authors are grateful for financial support from “Fate and Removal of Emerging Micropollutants in Environment” project under Special Task Force for Activating Research (STAR) of Chulalongkorn University.

REFERENCES

