Unique Positive Solution of Nonlinear Fractional Differential Equation Boundary Value Problem

Fengxia Zheng

Abstract—By using two new fixed point theorems for mixed monotone operators, the positive solution of nonlinear fractional differential equation boundary value problem is studied. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it.

Keywords—Fractional differential equation, boundary value problem, positive solution, existence and uniqueness, fixed point theorem, mixed monotone operator.

I. INTRODUCTION

Fractional differential equations are used in various fields, see [1]-[7]. In recent decades, people depth study a variety of boundary value problems for fractional differential equations, and have achieved important results, see [8]-[13].

In particular, by using contraction map principle and some Lipschitz-type conditions, Zhanbing Bai [9] investigated the existence and uniqueness of positive solutions for a nonlocal boundary value problem of fractional differential equation:

\[
\begin{cases}
D_{0+}^\alpha u(t) + f(t, u(t)) = 0, 0 < t < 1, \\
u(0) = 0, \beta u(\eta) = u(1),
\end{cases}
\]

where \(1 < \alpha \leq 2, 0 < \beta \eta^{\alpha-1} < 1, 0 < \eta < 1\).

Inspired by the above literature, we study the existence and uniqueness of positive solutions for the following problem:

\[
\begin{cases}
D_{0+}^\alpha u(t) + f(t, u(t), u(t)) + g(t, u(t)) = 0, 0 < t < 1, \\
u(0) = 0, \beta u(\eta) = u(1),
\end{cases}
\]

where \(1 < \alpha \leq 2, 0 < \beta \eta^{\alpha-1} < 1, 0 < \eta < 1\).

II. PRELIMINARIES AND PREVIOUS RESULTS

In this section, we present some definitions, lemmas and basic results that will be used in the proofs of our main results.

Definition 1 [4] The integral

\[
I_{0+}^\alpha f(x) = \frac{1}{\Gamma(\alpha)} \int_0^x \frac{f(t)}{(x-t)^{1-\alpha}} dt, x > 0
\]

Fengxia Zheng is with the School of Mathematics and Finance-Economics, Sichuan University of Arts and Science, Dazhou 635000, PR China. Email address: zhengfengxiaode@163.com.

is called the Riemann-Liouville fractional integral of order \(\alpha\), where \(\alpha > 0\) and \(\Gamma(\alpha)\) denotes the gamma function.

Definition 2 [4] For a function \(f(x)\) given in the interval \([0, \infty)\), the expression

\[
D_{0+}^\alpha f(x) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dx^n} \int_0^x \frac{f(t)}{(x-t)^{\alpha+n-1}} dt,
\]

is called the Riemann-Liouville fractional derivative of order \(\alpha\), where \(n = [\alpha] + 1\), \([\alpha]\) denotes the integer part of number \(\alpha\).

Lemma 1 [9] Let \(y \in C[0,1]\) and \(1 < \alpha \leq 2\), the unique solution of the fractional differential equation

\[
\begin{cases}
D_{0+}^\alpha u(t) + y(t) = 0, 0 < t < 1, \\
u(0) = 0, \beta u(\eta) = u(1),
\end{cases}
\]

where \(q = 1 - \beta \eta^{\alpha-1}\). Here \(G(t, s)\) is called the Green function of boundary value problem (2), and \(G(t, s) > 0, \forall t, s \in (0, 1)\).

Lemma 2 [9] Green function \(G(t, s)\) in Lemma 1 has the following property:

\[
\begin{align}
\int_0^{\eta^{\alpha-1}} [(1-q)(1-s)^{\alpha-1} - \beta(\eta-s)^{\alpha-1}] \\
\leq q\Gamma(\alpha)G(t, s) \\
\leq q\Gamma(\alpha)G(t, s), \forall t, s \in (0, 1)
\end{align}
\]

Proof: Evidently, From (4), the right inequality holds. So, we only need to prove the left inequality. Classifications are discussed below:

If

\[
0 \leq s \leq t \leq 1, s \leq \eta,
\]

then we have

\[
0 \leq t - s \leq t - ts = t(1-s),
\]

International Scholarly and Scientific Research & Innovation 7(11) 2013 1622 scholar.waset.org/1999.7/9997232
and thus \[(t - s)^{\alpha - 1} \leq t^{\alpha - 1}(1 - s)^{\alpha - 1}.
\]

Hence,

\[
q\Gamma(t)G(t, s)
\]
\[
= t^{\alpha - 1}(1 - s)^{\alpha - 1} - \beta t^{\alpha - 1}(\eta - s)^{\alpha - 1} - q(t - s)^{\alpha - 1}
\]
\[
\geq t^{\alpha - 1}(1 - s)^{\alpha - 1} - \beta t^{\alpha - 1}(\eta - s)^{\alpha - 1} - q(t - s)^{\alpha - 1}
\]
\[
= t^{\alpha - 1}[(1 - q)(1 - s)^{\alpha - 1} - \beta(\eta - s)^{\alpha - 1}].
\]

when \(0 < \eta < s \leq t \leq 1,\)

\[
q\Gamma(t)G(t, s)
\]
\[
= t^{\alpha - 1}(1 - s)^{\alpha - 1} - q(t - s)^{\alpha - 1}
\]
\[
\geq t^{\alpha - 1}(1 - s)^{\alpha - 1} - \beta t^{\alpha - 1}(\eta - s)^{\alpha - 1} - q(t - s)^{\alpha - 1}
\]
\[
\geq t^{\alpha - 1}[(1 - q)(1 - s)^{\alpha - 1} - \beta(\eta - s)^{\alpha - 1}].
\]

when \(0 \leq t \leq s \leq \eta < 1 \) and \(0 \leq t \leq s \leq 1, \eta \leq s,\) it can be proved similarly that above inequality is also true. So, the proof is complete.

In the sequel, we present some basic concepts in ordered Banach spaces for completeness and a fixed point theorem which will be used later.

Suppose \((E, \|\cdot\|)\) is a real Banach space which is partially ordered by a cone \(P \subseteq E, i.e, x \leq y \) if and only if \(y - x \in P.\) If \(x \leq y \) and \(x \neq y,\) then we denote \(x < y.\) We denote the zero element of \(E\) by \(0.\) Recall that a non-empty closed convex set \(P \subseteq E\) is a cone if it satisfies (i) \(x \in P, \lambda \geq 0 \Rightarrow \lambda x \in P;\) (ii) \(x \in P, -x \in P \Rightarrow x = 0.\)

Putting \(P^0 = \{x \in P|x \) is an interior point of \(P\}, \) a cone \(P\) is said to be solid if \(P^0 \) is non-empty. Moreover, \(P\) is called normal if there exists a constant \(N > 0\) such that, for all \(x, y \in E, \theta \leq x \leq y \) implies \(\|x\| \leq N\|y\|;\) in this case \(N\) is called the normality constant of \(P.\) We say that an operator \(A : E \rightarrow E\) is increasing if \(x \leq y \implies Ax \leq Ay.\)

For all \(x, y \in E,\) the notation \(x \sim y \Rightarrow \) means that there exist \(\lambda > 0\) and \(\mu > 0\) such that \(\lambda x \leq \mu y \leq \lambda x.\) Clearly \(\sim\) is an equivalence relation. Given \(w > \theta\) (i.e. \(w \geq \theta \) and \(w \neq 0,\) we denote the set \(P_w = \{x \in E|x \sim w\} \) by \(P_w.\) It is easy to see that \(P_w \subseteq P\) for \(P_w \subseteq P.\)

Definition 3 [14]: \(A : P \times P \rightarrow P\) is said to be a mixed monotone operator if \(A(x, y)\) is increasing in \(x\) and decreasing in \(y, i.e., u_1, v_1(i = 1, 2) \in P, u_1 \leq u_2, v_1 \geq v_2 \) imply \(A(u_1, v_1) \leq A(u_2, v_2).\) Element \(x \in P\) is called a fixed point of \(A\) if \(A(x, x) = x.\)

Definition 4 [15]: An operator \(A : P \rightarrow P\) is said to be sub-homogeneous if it satisfies

\[
A(tx) \geq t^\alpha A(x), \quad \forall t \in (0, 1), x \in P.
\]

Definition 5 [15]: Let \(D = P \) and \(\beta \) be a real number with \(0 \leq \beta < 1.\) An operator \(A : D \rightarrow D\) is said to be \(\beta\)-concave if it satisfies

\[
A(tx) \geq t^\beta A(x), \quad \forall t \in (0, 1), x \in D.
\]

Lemma 3 (Theorem 2.1 in [14]): Let \(w > \theta\) and \(\beta \in (0, 1).\) \(A : P \times P \rightarrow P\) is a mixed monotone operator and satisfies

\[
A(tx, t^{-1}y) \geq t^\beta A(x, y), \quad \forall t \in (0, 1), x, y \in P.
\]

\(B : P \rightarrow P\) is an increasing sub-homogeneous operator. Assume that

(i) there is \(w_0 \in P_w\) such that \(A(w_0, w_0) \in P_w\) and \(Bw_0 \in P_w;\)

(ii) there exists a constant \(\delta_0 > 0\) such that \(A(x, y) \geq \delta_0 Bx, \forall x, y \in P.\)

Then:

(1) \(A : P_w \times P_w \rightarrow P\) and \(B : P_w \rightarrow P_w;\)

(2) there exist \(u_0, v_0 \in P_w\) and \(\gamma \in (0, 1)\) such that

\[
r^0 \leq u_0 \leq v_0, \quad u_0 \leq A(u_0, v_0) + B(u_0) \leq A(r_0, u_0) + Bv_0 \leq v_0.
\]

(3) the operator equation \(A(x, x) + Bx = x\) has a unique solution \(x^*\) in \(P_w;\)

(4) for any initial values \(x_0, y_0 \in P_w,\) constructing successively the sequences

\[
x_n = A(x_{n-1}, y_{n-1}) + Bx_{n-1},
\]

\[
y_n = A(y_{n-1}, x_{n-1}) + By_{n-1}, \quad n = 1, 2, ...
\]

we have \(x_n \rightarrow x^*\) and \(y_n \rightarrow x^*\) as \(n \rightarrow \infty.\)

Lemma 4 (Theorem 2.4 in [14]): Let \(\theta > 0, \beta \in (0, 1).\) \(A : P \times P \rightarrow P\) is a mixed monotone operator and satisfies

\[
A(tx, t^{-1}y) \geq t^\alpha A(x, y), \quad \forall t \in (0, 1), x, y \in P.
\]

III. Main results

In this section, we apply Lemma 3 and Lemma 4 to investigate the problem (2), and we obtain some new results on the existence and uniqueness of positive solutions.

In this paper, we will work in the Banach space \(C[0, 1] = \{x : [0, 1] \rightarrow R\) is continuous\} with the standard norm \(\|x\| = \sup\{\|x(t)\| : t \in [0, 1]\}.\) Notice that this space can be endowed with a partial order given by

\[
x, y \in C[0, 1], \quad x \leq y \Leftrightarrow x(t) \leq y(t) \text{ for } t \in [0, 1].
\]

Let \(P = \{x \in C[0, 1]|x(t) \geq 0, t \in [0, 1]\}\) be the standard cone. Evidently, \(P\) is a normal cone in \(C[0, 1]\) and the
normality constant is 1.

Theorem 1 Assume that
(A1) \(f : [0, 1] \times [0, +\infty) \times [0, +\infty) \to [0, +\infty) \) is continuous and \(g : [0, 1] \times [0, +\infty) \to [0, +\infty) \) is also continuous;
(A2) \(f(t, u, v) \) is increasing in \(u \in [0, +\infty) \) for fixed \(t \in [0, 1] \) and \(v \in [0, +\infty) \), decreasing in \(v \in [0, +\infty) \) for fixed \(t \in [0, 1] \) and \(u \in [0, +\infty) \), and \(g(t, u) \) is increasing in \(u \in [0, +\infty) \) for fixed \(t \)
(A3) \(g(t, 0) \neq 0 \) and \(g(t, u) \geq \mu g(t, u), \forall t \in [0, 1], \mu \in (0, 1), u \in [0, \infty) \), and there exists a constant \(\beta \in (0, 1) \) such that
\[
 f(t, u, \lambda^{-1}v) \geq \lambda^\beta f(t, u, v), \forall \lambda \in (0, 1), u, v \in [0, \infty);
\]
(A4) there exists a constant \(\delta_0 > 0 \) such that \(f(t, u, v) \geq \delta_0 g(t, u), t \in [0, 1], u, v \geq 0 \).

Then:
(a) there exist \(u_0, v_0 \in P_w \) and \(\gamma \in (0, 1) \) such that \(rv_0 \leq u_0 < v_0 \) and
\[
u_0(t) \leq \int_0^1 G(t, s)[f(s, u_0(s), v_0(s)) + g(s, u_0(s))]ds,
\]
\(v_0(t) \geq \int_0^1 G(t, s)[f(s, v_0(s), u_0(s)) + g(s, v_0(s))]ds,
\)
where \(w(t) = t^{\alpha - 1}, t \in [0, 1] \) and \(G(t, s) \) is given as in (4);
(b) the problem (2) has a unique positive solution \(u^* \in P_w ;
(c) for any \(x_0, y_0 \in P_w \), constructing successively the sequences
\[
x_n(t) = \int_0^1 G(t, s)f(s, x_{n-1}(s), y_{n-1}(s))ds + \int_0^1 G(t, s)g(s, x_{n-1}(s))ds, n = 1, 2, \ldots,
\]
\[
y_n(t) = \int_0^1 G(t, s)f(s, y_{n-1}(s), x_{n-1}(s))ds + \int_0^1 G(t, s)g(s, y_{n-1}(s))ds, n = 1, 2, \ldots
\)
We have \(x_n(t) \to u^*(t) \) and \(y_n(t) \to u^*(t)ds \) as \(n \to \infty \).

Proof: To begin with, from Lemma 1, the problem (2) has an integral formulation given by
\[
u(t) = \int_0^1 G(t, s)[f(s, u(s), v(s)) + g(s, u(s))]ds,
\]
where is given as in (4).

Define two operators \(A : P \to P \) and \(B : P \to P \) by
\[
 A(u, v)(t) = \int_0^1 G(t, s)[f(s, u(s), v(s)) + g(s, u(s))]ds,
\]
\[
 B(u, v)(t) = \int_0^1 G(t, s)g(s, u(s))ds.
\]

It is easy to prove that is the solution of the problem (2) if and only if \(u = Au + Bu \). From (A1), we know that \(A : P \to P \) and \(B : P \to P \). In the sequel we check that \(A, B \) satisfy assumptions of Lemma 3.

Firstly, we prove that \(A \) is a mixed monotone operator. In fact, for \(u_i, v_i (i = 1, 2) \in P \) with \(u_1 \geq u_2, v_1 \leq v_2 \), we know that \(u_1(t) \geq u_2(t), v_1(t) \leq v_2(t) \), \(t \in [0, 1] \), and by (A2) and Lemma 1,
\[
 A(u_1, v_1)(t) = \int_0^1 G(t, s)f(s, u_1(s), v_1(s))ds + \int_0^1 G(t, s)g(s, u_1(s))ds \geq A(u_2, v_2)(t)
\]
That is, \(A(u_1, v_1) \geq A(u_2, v_2) \).

Further, it follows from (A2) and Lemma 1 that \(B \) is increasing. Next we show that \(A \) satisfies the condition (8). For any \(\lambda \in (0, 1) \), and \(u, v \in P \), from (A3) we know that
\[
 A(\lambda u, \lambda^{-1}v)(t) = \int_0^1 G(t, s)f(s, \lambda u(s), \lambda^{-1}v(s))ds \geq \lambda^\beta \int_0^1 G(t, s)f(s, u(s), v(s))ds = \lambda^\beta A(u, v)(t)
\]
That is \(A(\lambda u, \lambda^{-1}v) \geq \lambda^\beta A(u, v) \), for \(\lambda \in (0, 1) \) and \(u, v \in P \). So, the operator \(A \) satisfies (8). Also, for any \(\mu \in (0, 1) \) and \(u \in P \), from (A3) we have
\[
 B(\mu u)(t) = \int_0^1 G(t, s)g(s, \mu u(s))ds \geq \mu \int_0^1 G(t, s)g(s, u(s))ds = \mu B(u)(t)
\]
That is \(B(\mu u) \geq \mu B(u) \) for \(\mu \in (0, 1) \) and \(u \in P \). So the operator \(B \) is a sub-homogeneous operator. Now we show that \(A(w, w) \in P_w \) and \(Bw \in P_w \), where \(w(t) = t^{\alpha - 1}, t \in [0, 1] \).

By (A1), (A2) and Lemma 2,
\[
w(t) \int_0^1 [(1 - q)(1 - s)^{\alpha - 1} \geq q \int_0^1 G(t, s)f(s, w(s), w(s))ds \geq w(t) \int_0^1 (s)^{-\alpha - 1} f(s, 1, 0)ds
\]
From (A2) and (A4), we have
\[
f(s, 1, 0) \geq f(s, 0, 1) \geq \delta_0 g(s, 0)
\]
Since \(g(t, 0) \neq 0 \), we get
\[
 \int_0^1 f(s, 0, 1)ds \geq \int_0^1 f(s, 0, 1)ds \geq \delta_0 \int_0^1 g(s, 0)ds > 0,
\]
and in consequence,
\[
l_1 := \frac{1}{\alpha \int_0^1 f(s, 0, 1)ds} > 0
\]
\[
l_2 := \frac{1}{\alpha \int_0^1 f(s, 0, 1)ds} > 0
\]
So \(lw(t) \leq A(w, w)(t) \leq lw(w, t) \), \(t \in [0, 1] \); and hence we have \(A(w, w) \in P_w \).

Similarly,
\[
w(t) \int_0^1 [(1 - q)(1 - s)^{\alpha - 1} \geq q \int_0^1 G(t, s)f(s, w(s), w(s))ds \geq w(t) \int_0^1 (s)^{-\alpha - 1} g(s, 1)ds
\]
from \(g(t, 0) \neq 0 \), we easily prove \(Bw \in P_w \). Hence the condition (i) of Lemma 3 is satisfied.

In the following, we show that the condition (ii) of Lemma 3 is also satisfied. For \(u, v \in P \) and any \(t \in [0, 1] \) by (A4),
\[
 A(u, v)(t) = \int_0^1 G(t, s)f(s, u(s), v(s))ds \geq \delta_0 \int_0^1 G(t, s)g(s, u(s))ds = \delta_0 Bu(t)
\]
Then we get \(A(u, v) \geq \delta_0 Bu, u, v \in P \).

Finally, an application of Lemma 3 implies: there exist \(u_0, v_0 \in P_w \) and \(\gamma \in (0, 1) \) such that
\[
r v_0 \leq u_0 < v_0,
\]
\[
u_0 \leq A(u_0, v_0) + Bu_0 \leq A(v_0, u_0) + Bu_0 \leq v_0.
\]
the operator equation \(A(u, u) + Bu = u \) has a unique solution \(u^* \) in \(P_w \); for any initial values \(x_0, y_0 \in P_w \), constructing successively the sequences
\[
x_n = A(x_{n-1}, y_{n-1}) + Bx_{n-1}, \\
y_n = A(y_{n-1}, x_{n-1}) + By_{n-1}, \quad n = 1, 2, \ldots
\]
We have \(x_n \to u^* \) and \(y_n \to u^* \) as \(n \to \infty \). That is, there exist \(u_0, v_0 \in P_w \) and \(\gamma \in (0, 1) \) such that \(v_n \leq u_0 < v_0 \) and
\[
u_0(t) \leq \int_0^1 G(t, s)[f(s, u_0(s), v_0(s)) + g(s, u_0(s))]ds, \\
u_n(t) \geq \int_0^1 G(t, s)[f(s, v_n(s), u_0(s)) + g(s, v_n(s))]ds.
\]
The problem (2) has a unique positive solution \(u^* \) in \(P_w \); for any initial values \(x_0, y_0 \in P_w \), constructing successively the sequences
\[
x_n(t) = \int_0^1 G(t, s)f(s, x_{n-1}(s), y_{n-1}(s))ds + \int_0^1 \int_0^1 G(s, \tau)[f(\tau, x_{n-1}(\tau), y_{n-1}(\tau)) + g(\tau, y_{n-1}(\tau))]d\tau ds, \\
y_n(t) = \int_0^1 G(t, s)g(s, y_{n-1}(s))ds, \quad n = 1, 2, \ldots
\]
We have \(x_n(t) \to u^* (t) \) and \(y_n(t) \to u^*(t) \) as \(n \to \infty \).

Theorem 2 Assume that (A1), (A2) and (A5)
\[f(t, u, \lambda^{r-1}) \geq \lambda f(t, u, v), \quad \forall t \in [0, 1], \lambda \in (0, 1), u, v \in [0, \infty), \text{ and there exists a constant } \beta \in (0, 1) \text{ such that} \]
\[g(t, \mu \nu) \geq \mu^\beta g(t, u), \quad \forall t \in [0, 1], \mu \in (0, 1), u \in [0, \infty); \]
(A6)
\[f(t, 0, 1) \neq 0 \text{ for } t \in [0, 1] \text{ and there exists a constant } \delta_0 > 0 \text{ such that} \]
\[f(t, u, v) \leq \delta_0 g(t, u), \quad t \in [0, 1], u, v \geq 0. \]
Then:
(a) there exist \(u_0, v_0 \in P_w \) and \(\gamma \in (0, 1) \) such that \(rv_0 \leq u_0 < v_0 \) and
\[u_0(t) \leq \int_0^1 G(t, s)[f(s, u_0(s), v_0(s)) + g(s, u_0(s))]ds, \\
u_0(t) \geq \int_0^1 G(t, s)[f(s, v_0(s), u_0(s)) + g(s, v_0(s))]ds, \]
where \(u(t) = t^{\alpha-1}(1-t), \quad t \in [0, 1] \) and \(G(t, s) \) is given as in (3);
(b) The problem (1) has a unique positive solution \(u^* \) in \(P_w \);
(c) for any \(x_0, y_0 \in P_w \), constructing successively the sequences
\[
x_n(t) = \int_0^1 G(t, s)f(s, x_{n-1}(s), y_{n-1}(s))ds + \int_0^1 \int_0^1 G(s, \tau)f(\tau, x_{n-1}(\tau), y_{n-1}(\tau))d\tau ds, \\
y_n(t) = \int_0^1 G(t, s)g(s, y_{n-1}(s))ds, \quad n = 1, 2, \ldots
\]
We have \(x_n(t) \to u^*(t) \) and \(y_n(t) \to u^*(t) \) as \(n \to \infty \).

Proof: Consider two operators \(A, B \) defined in the proof of Theorem 1. Similarly, from (A1), (A2), we obtain that \(A : P \times P \to E \) is a mixed monotone operator and \(B : P \to E \) is increasing. From (A5), we have
\[A(\lambda u, \lambda^{r-1}v) \geq \lambda A(u, v), \lambda \in (0, 1), u, v \in P \]
\[B(\mu \nu) \geq \mu^\beta B(u), \mu \in (0, 1), u \in P. \]
From (A2) and (A6), we have
\[g(s, 0) \geq \frac{1}{\delta_0} f(s, 0, 1), \\
f(s, 1, 0) \geq f(s, 0, 1), \quad s \in [0, 1]. \]
Since \(f(t, 0, 1) \neq 0 \), we get
\[
\int_0^1 f(s, 0, 1)ds \geq \int_0^1 f(s, 0, 1)ds > 0, \\
\int_0^1 g(s, 0)ds \geq \int_0^1 g(s, 0)ds \geq \frac{1}{\delta_0} \int_0^1 f(s, 0, 1)ds > 0,
\]
and in consequence,
\[
\frac{1}{\delta_0} \int_0^1 (1-s)^{r-1} f(s, 0, 1)ds \\
\geq \frac{1}{\delta_0} \int_0^1 (1-s)^{r-1}(1-s)\beta^{-1} \geq \beta^{-1} \int_0^1 f(s, 0, 1)ds > 0,
\]
\[
\frac{1}{\delta_0} \int_0^1 (1-s)^{r-1} g(s, 0)ds \\
\geq \frac{1}{\delta_0} \int_0^1 (1-s)^{r-1} \int_0^1 (1-s)^{r-1} \geq (\beta^{-1})\int_0^1 g(s, 0)ds > 0.
\]
So, we can easily prove that \(A(u, v) \in P_w \) and \(Bu \in P_w \). For \(u, v \in P \), and any \(t \in [0, 1] \) by (A6),
\[
A(u, v)(t) = \int_0^1 G(t, s)f(s, u(s), v(s))ds \\
\leq \delta_0 \int_0^1 G(t, s)g(s, u(s))ds \\
= \delta_0 Bu(t)
\]
Then we get \(A(u, v) \leq \delta_0 Bu, \quad u, v \in P \).

Finally, an application of Lemma 4 implies: there exist \(u_0, v_0 \in P_w \) and \(\gamma \in (0, 1) \) such that
\[rv_0 \leq u_0 < v_0, \]
\[u_0 \leq A(u_0, v_0) + Bu_0 \leq A(v_0, u_0) + Bu_0 \leq v_0. \]
the operator equation \(A(u, u) + Bu = u \) has a unique solution \(u^* \) in \(P_w \); for any initial values \(x_0, y_0 \in P_w \), constructing successively the sequences
\[
x_n = A(x_{n-1}, y_{n-1}) + Bx_{n-1}, \\
y_n = A(y_{n-1}, x_{n-1}) + By_{n-1}, \quad n = 1, 2, \ldots
\]
We have \(x_n \to u^* \) and \(y_n \to u^* \) as \(n \to \infty \). That is, there exist \(u_0, v_0 \in P_w \) and \(\gamma \in (0, 1) \) such that \(rv_0 \leq u_0 < v_0 \) and
\[u_0(t) \leq \int_0^1 G(t, s)[f(s, u_0(s), v_0(s)) + g(s, u_0(s))]ds, \\
v_0(t) \geq \int_0^1 G(t, s)[f(s, v_0(s), u_0(s)) + g(s, v_0(s))]ds, \]
where \(u(t) = t^{\alpha-1}(1-t), \quad t \in [0, 1] \) and \(G(t, s) \) is given as in (3);
(b) The problem (1) has a unique positive solution \(u^* \) in \(P_w \);
(c) for any \(x_0, y_0 \in P_w \), constructing successively the sequences
\[
x_n(t) = \int_0^1 G(t, s)f(s, x_{n-1}(s), y_{n-1}(s))ds + \int_0^1 \int_0^1 G(s, \tau)f(\tau, x_{n-1}(\tau), y_{n-1}(\tau))d\tau ds, \\
y_n(t) = \int_0^1 G(t, s)g(s, y_{n-1}(s))ds, \quad n = 1, 2, \ldots
\]
We have \(x_n(t) \to u^*(t) \) and \(y_n(t) \to u^*(t) \) as \(n \to \infty \).

Proof: Consider two operators \(A, B \) defined in the proof of Theorem 1. Similarly, from (A1), (A2), we obtain that \(A : P \times P \to E \) is a mixed monotone operator and \(B : P \to E \) is increasing. From (A5), we have
\[A(\lambda u, \lambda^{r-1}v) \geq \lambda A(u, v), \lambda \in (0, 1), u, v \in P \]
\[B(\mu \nu) \geq \mu^\beta B(u), \mu \in (0, 1), u \in P. \]
From (A2) and (A6), we have
\[g(s, 0) \geq \frac{1}{\delta_0} f(s, 0, 1), \\
f(s, 1, 0) \geq f(s, 0, 1), \quad s \in [0, 1]. \]
where $u(t) = t^{\alpha-1}(1-t)$, $t \in [0,1]$ and $G(t,s)$ is given as in (3);

(ii) The problem

\[
D^\alpha_0 u(t) + g(t, u(t), u(t)) = 0, \quad 0 < t < 1, \quad 1 < \alpha \leq 2,
\]

\[
u(0) = 0, \quad \beta u(1) = u(1),
\]

has a unique positive solution u^* in P_w;

(iii) for any $x_0, y_0 \in P_w$, constructing successively the sequences

\[
x_n(t) = \int_0^t G(t,s)g(s,x_{n-1}(s))ds, \quad n = 1, 2, \ldots,
\]

\[
y_n(t) = \int_0^t G(t,s)g(s,y_{n-1}(s),t)ds, \quad n = 1, 2, \ldots
\]

We have $x_n(t) \to u^*(t)$ and $y_n(t) \to u^*(t)$ as $n \to \infty$.

Corollary 2 Let $f \equiv 0$. Assume that g satisfies the conditions of Theorem 2 and $g(t,0) \neq 0$, for $t \in [0,1]$.

(i) there exist $u_0, v_0 \in P_w$ and $\gamma \in (0,1)$ such that $\gamma v_0 \leq u_0 < v_0$ and

\[
u_0(t) \leq \int_0^1 G(t,s)g(s,u_0(s))ds, \quad v_0(t) \geq \int_0^1 G(t,s)g(s,v_0(s))ds,
\]

where $u(t) = t^{\alpha-1}(1-t)$, $t \in [0,1]$ and $G(t,s)$ is given as in (4);

(ii) The problem

\[
D^\alpha_0 u(t) + g(t, u(t)) = 0, \quad 0 < t < 1, \quad 1 < \alpha \leq 2,
\]

\[
u(0) = 0, \quad \beta u(1) = u(1),
\]

has a unique positive solution u^* in P_w;

(iii) for any $x_0, y_0 \in P_w$, constructing successively the sequences

\[
x_n(t) = \int_0^t G(t,s)g(s,x_{n-1}(s))ds, \quad n = 1, 2, \ldots,
\]

\[
y_n(t) = \int_0^t G(t,s)g(s,y_{n-1}(s))ds, \quad n = 1, 2, \ldots
\]

We have $x_n(t) \to u^*(t)$ and $y_n(t) \to u^*(t)$ as $n \to \infty$.

ACKNOWLEDGMENT

The authors would like to thank the associate editor and the anonymous reviewers for their detailed comments and suggestions.

REFERENCES

Fengxia Zheng was born in Hubei Province, China, in 1985. She received the B.S. degree from Hubei Institute for Nationalities, Enshi, in 2009. She received the M.S. degree in applied mathematics from UESTC, Chengdu, in 2012. Her research interests include differential equations and neutral network.