Application of Digital Image Correlation Technique on Vacuum Assisted Resin Transfer Molding Process and Performance Evaluation of the Produced Materials

Dingding Chen, Kazuo Arakawa, Masakazu Uchino, Changheng Xu

Abstract—Vacuum assisted resin transfer moulding (VARTM) is a promising manufacture process for making large and complex fiber reinforced composite structures. However, the complexity of the flow of the resin in the infusion stage usually leads to nonuniform property distribution of the produced composite part. In order to control the flow of the resin, the situation of flow should be mastered. For the safety of the usage of the produced composite in practice, the understanding of the property distribution is essential. In this paper, we did some trials on monitoring the resin infusion stage and evaluation for the fiber volume fraction distribution of the VARTM produced composite using the digital image correlation methods. The results show that 3D-DIC is valid on monitoring the resin infusion stage and it is possible to use 2D-DIC to estimate the distribution of the fiber volume fraction on a FRP plate.

Keywords—Digital image correlation, VARTM, FRP, fiber volume fraction.

I. INTRODUCTION

Vacuum assisted resin transfer moulding (VARTM) is widely used for moulding of complicated composite structures because of its ease of operation and low cost, and has been applied to marine vessels and next generation airplanes[1]. However, compared with the other typical manufacturing process, VARTM is young and meets many problems, such as low fibre volume fraction and nonuniform property distributions of its products. Consequently, amount of works have been performed to improve this process and try to get a deeper understanding of it.

In order to improve the quality of the VARTM produced composite parts, a large amount of researches were done to improve this process[2]-[7]. Almost all of these improvements aimed at realizing a uniform flow of the resin in the resin infusion stage. Consequently, a comprehensive understanding of the flow is essential. The Center for Composite Materials in University of Delaware has a series research on VARTM [8]-[11]. Simacek[10] built a theoretical mold to simulate the flow of the resin. This mold was then proof to be valid by his experiments[11]. Almost at the same time, a research group in the University of Auckland finished the similar research [12]-[14]. And, in their research, they developed a digital speckle stereophotogrammetry system which is a full-field test system to monitor the thickness evolution of the package [13]. Both of their researches show that thickness of the stack is an important parameter to response the infusion of the resin.

On the other hand, the property distributions of VARTM produced materials usually are not uniform. Since the distribution is not uniform, it is essential to estimate the distribution for the safe use. Fiber volume fraction is one of the most important properties of composite materials. There are two standard methods testing this parameter[15]. One is removing the matrix component by using a hot liquid medium[16] or a furnace[17]. The operation of this method is a little complex. The most important is this method need destroy the material. The other is a calculation with the thickness of the composite material and the density of the reinforcement components. However, the composite part made by VARTM process usually only has one smooth surface, making it difficult to measure the thickness accurately. Consequently, if there is a nondestructive method which can estimate the fiber volume fraction, or even giving a rough distribution, it would be very useful for the safe use of VARTM manufactured composite materials.

In this paper, we did some trials on monitoring the resin infusion stage in VARTM process and evaluation for the distribution of the fiber volume fraction of the VARTM produced CFRP plate using the digital image correlation methods. A three dimensional digital correlation method (3D-DIC) technique was adopted to research the resin infusion process by monitoring the thickness evolution of the stack of fabrics. A two dimensional digital image correlation technique (2D-DIC) was used to calculate the coefficient of thermal expansion (CTE) which is related to the fiber volume fraction to estimate the distribution of the fiber volume fraction.

II. DIGITAL IMAGE CORRELATION METHOD

A. 2D-DIC

The sketch of 2D-DIC method is shown in Fig. 1. This
method recognizes the same point in two pictures taken before and after deformation of an object through some correlation equations. And then it compares the positions of the point in the two pictures to get the displacement \[18\]. A small subset \((N\times M)\) centered at a pixel point \(P(X,Y)\) on the undeformed object image is used to obtain an estimate of the displacement of a point \(P\). Intensity values of all points in the subsets \((N\times M)\) on the undeformed image are compared to the intensity values of other subsets on the deformed image by using the following equation,

\[
C(X+u,Y+v) = \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} I_a(X+u+i,Y+v+j) - I_u(X+u,Y+v) \quad (1)
\]

where \(N=2M+1\), \(C\) is a correlation function. \(I_a\) and \(I_u\) are intensity values of a point on the deformed and undeformed images, respectively. The values, \(u\) and \(v\), are displacement components in the \(x\) and \(y\) directions, respectively. The values of \(u'\) and \(v'\) which minimize \(C\) are roughly assumed to be the displacements in pixel. The precision of the result is only 1 pixel. With some further analysis \[19\], a better precision higher than 1 pixel can be calculated. Then with the relationship between the pixel and the real length, the displacement with a high precision can be obtained.

\[
\begin{align*}
 &u = f_{x1}(x) + f_{y1}(y) + f_{z1}(z) \\
 &v = f_{x2}(x) + f_{y2}(y) + f_{z2}(z)
\end{align*}
\quad (2)
\]

In the right side, the expressions, \(f\), are quadratic equations about \(x\), \(y\) and \(z\) respectively. With some calibration work, the detailed expression of \(f\) can be fixed; thereby the expressions (2) can be fixed. Then, in the test, the displacement of an object, \((x', y', z')\), in the spatial space can be calculated by solving the equation set (2) with the displacements, \((u_1, v_1)\) and \((u_2, v_2)\), recorded by the cameras.

III. MONITOR OF RESIN INFUSION PROCESS

A. Experiment

Fig. 3 is a schematic diagram of the VARTM process and the 3D DIC test system. Eight layers of a [30°/−30°] stitched carbon fiber fabric (Saertex GmbH & Co. KG) were laid on a solid mold and covered with a peel ply. The inlet and the vent, located on either side of the stack, were made using a rubber connector and a segment of a spiral tube, forming a linear inlet (and vent), and thereby provided uniform resin flow. The entire structure was then enclosed in a transparent vacuum bag and sealed with tape. The resin (XNR/XNH6815, Nagase & Co., Ltd.) was infused after drawing a vacuum. The inlet was closed once the resin reached the vent and began to flow out of the package. The vent was left open for about another 30 min to extrude the excess resin from the package. The size of the stack was 170 × 140 mm. Two bands having random patterns were made on the transparent vacuum bag for DIC analysis (Fig. 3 (b)). The other parts were left unpainted to observe the flow inside the package. Two cameras were focused on the same area and were computer-controlled so that they would record images simultaneously. The entire infusion process was recorded. The precision of the 3D-DIC test system could reach 0.01 mm.
Results and Discussion

Fig. 4 shows the vacuum package and the full-field thickness change distribution at 17 min. The time was counted from the time of opening the inlet. The resin was infused from the left side. The stack of fabric changes from gray to black due to the saturation of the resin. Consequently, the outline of the black area in Fig. 4 (a) shows the flow front of the resin. Fig. 4 (b) is the full-field thickness change distribution of the package. Fig. 4 (c) shows the thickness change distribution along the line from point A to point E marked in Fig. 4 (a). Fig. 5 shows the thickness evolution of the five points, from A to E shown in Fig. 4 (a), on the vacuum package. Fig. 5 shows, after opening the inlet, point A expanded quickly due to a mass of the resin was infused. However, the other points, from B to E, had an obvious shrinkage stage. These parts shrunk first and then expanded. Simacek [11] and Yenilmez [22], [23] also found the similar phenomenon in their researches. After closing the inlet at about 50 min, the entire part began to shrink together, because no resin was infused anymore, but extra resin was continue to be extruded until the vent was closed. After closing the vent at about 80 min, the thickness still decreased a little, showing a creep like property [24].

Our explanation on the shrinkage stage is that the first contact of resin reduces the friction between fibers, making the stack much easier to be compacted. Additionally, the surface tension of the resin increases the compacting pressure.
Consequently, the thickness begins to decrease. Then, after the resin exceeds the least amount required for full saturation, friction no longer decreases. As the increasing amount of resin shares more of the compacting pressure in the stack, the stack expands. Based on this analysis of the thickness evolution, the deep blue part in Fig. 4 (b) can be considered as the flow front. Figs. 4 (a) and (b) coincide with each other very well, indicating that our analysis is correct and the 3D DIC system is valid.

IV. DISTRIBUTION OF FIBER VOLUME FRACTION

A. Experiment

Fiber volume fraction is one of the most important parameters of composites. As we all know the carbon fiber and the resin have totally different coefficients of thermal expansion (CTE). Different fiber volume fractions may cause different coefficient of thermal expansion values. This experiment tried to estimate the distribution of the fiber volume fraction by testing the areal coefficient of thermal expansion.

A CFRP plate manufactured from VARTM process was used. The thickness is around 2 mm. In this VARTM process, a metal plate was used to make the up surface of the CFRP plate smooth, making it possible to measure the thickness relatively accurate [25]. The CFRP plate is about 290 mm long as shown in Fig. 6. Rectangular specimens were cut from the plate for the test of the coefficient of thermal expansion. The inlet and the vent indicate the infusion direction in the VARTM process. The specimen is about 14 mm wide and 42 mm long.

For each specimen, the displacements of 2201 points which uniformly located on the specimen surface were tested through 2D-DIC technique. Strain is the displacement derivation of the position as defined as the follows

\[\varepsilon_x = \frac{\partial \delta_x}{\partial x} \]
\[\varepsilon_y = \frac{\partial \delta_y}{\partial y} \]

where \(\varepsilon_x \) and \(\varepsilon_y \) are the strain in \(x \) and \(y \) directions, respectively. \(\delta_x \) and \(\delta_y \) are the displacement in \(x \) and \(y \) directions, respectively. One of the simplest methods to calculate the strain from the displacement results is the finite difference method. However, this method usually leads to a large error due to some fluctuant results. In order to get an accurate result of the strain of a point, quadric surface equations were adopted to fit the displacement results of its vicinity area as follows

\[\delta_z = a_0 + a_1 x + a_2 x^2 + a_3 y + a_4 xy + a_5 y^2 \]
\[\delta_y = b_0 + b_1 x + b_2 x^2 + b_3 y + b_4 xy + b_5 y^2 \]

The parameters, \(a_i \) and \(b_i \) (\(i = 1, 2, \cdots, 5 \)), could be fixed through the least square procedure with the displacement results of the target point and its ambient points as shown in Fig. 8. Combining (3) and (4), the strain could be calculated through the following equation

\[\varepsilon_x = a_1 + 2a_3 x + a_4 y \]
\[\varepsilon_y = b_1 + b_3 x + b_5 y \]

The areal strain can be considered as the sum of \(\varepsilon_x \) and \(\varepsilon_y \),

\[\varepsilon = \varepsilon_x + \varepsilon_y \]

Then, the coefficient of thermal expansion of a specimen is

\[CTE = \frac{\varepsilon_{ave}}{\Delta T} \]

where \(\varepsilon_{ave} \) is the average areal strain of all the points on the
Calculation of Fiber Volume Fraction

The fiber volume fraction of the specimens were calculated roughly using the following equation

\[f_{\text{fiber}} = \frac{n \cdot \rho_f'}{\rho_f' \cdot h} \]

(7)

where \(n \) is the number of fabric layers, \(\rho_f' \) and \(\rho_f' \) are the areal and volume density of the fabric, respectively. \(h \) is the thickness of samples, determined by a micrometer.

B. Results and Discussion

Fig. 9 shows the results of the coefficient of thermal expansion and fiber volume fraction. The lateral axis shows the distance of the specimen from the edge of the CFRP plate near the inlet to its location on the plate, as shown in Fig. 6. In order to emphasis the relationship between the coefficient of thermal expansion and the fiber volume fraction, the scale of fiber volume fraction in the graph is inverse, from 56.3 to 53.8. This graph shows that from the inlet to the vent the CFRP plate has increasing distribution of the fiber volume fraction. And the specimens near the inlet show a higher coefficient of thermal expansion. In order to ensure the reliability of the experiment, the test of the coefficient of thermal expansion was repeated three times. The results are shown Fig. 10. Though the results of each specimen are a little different, the three tests show the same distribution, indicating that the tendency is reliable.

The distribution of the fiber volume fraction in Fig. 9 is reasonable, because a few of concentrations of the resin in the vicinity of the inlet in the resin infusion stage of VARTM process usually make the part near the inlet remain more resin, leading to a larger thickness. The order of the coefficient of thermal expansion of resin is \(10^{-5} \). The coefficient of fibers is even a little lower than \(10^{-6} / ^\circ\text{C} \). When a CFRP specimen is heated, the component of the resin should expand faster than the fibers do. The small expansion and the high tensile modulus of the fiber will restrict the expansion of the resin. When the fiber content is higher, this restriction will be stronger. Consequently, a specimen with a higher coefficient of thermal expansion should have a lower fiber volume fraction, coinciding with the relationship shown in Fig. 9. Additionally, from Fig. 9 we can find the coefficient of thermal expansion is sensitive to the fiber volume fraction. From the inlet to the vent, the fiber volume fraction only increases by about 3%, however the coefficient of thermal expansion decreases by near 50%, indicating a high sensitivity of this method.

V. Conclusion

In this paper, we did some trials on using digital image correlation method to monitor the resin infusion stage in VARTM process and estimate the fiber volume fraction distribution of a VARTM produced CFRP plate. The conclusions can be summarized as two points.
1. 3D-DIC technique is valid on monitoring the resin infusion stage in VARTM process. The results tested by 3D-DIC method are useful to analyze the regular of the flow of the resin.

2. Though we did not give an accurate relationship between the coefficient of thermal expansion and the fiber volume fraction of the CFRP material, it was proved that measurement of the coefficient of thermal expansion using 2D-DIC technique is a promising method to estimate the fiber volume fraction nondestructively.

ACKNOWLEDGMENT

This work was partly supported by a research grant from the Japan Society for Promotion of Science (#23656605), and by the Collaborative Research Program of Research Institute for Applied Mechanics, Kyushu University. The authors also would like to acknowledge SAERTEX GmbH & Co. KG and NAGASE & Co., LTD. for their support of the carbon fabric and the epoxy resin respectively.

REFERENCES

