Friction Stir Welded Joint Aluminum Alloy H20-H20 with Different Type of Tools Mechanical Properties

Omid A. Zargar

Abstract—In this project three type of tools, straight cylindrical, taper cylindrical and triangular tool all made of High speed steel (Wc-Co) used for the friction stir welding (FSW) aluminum alloy H20-H20 and the mechanical properties of the welded joint tested by tensile test and vicker hardness test. Besides, mentioned mechanical properties compared with each other to make conclusion. The result helped design of welding parameter optimization for different types of friction stir process like rotational speed, depth of welding, travel speed, type of material, type of joint, work piece dimension, joint dimension, tool material and tool geometry. Previous investigations in different types of materials work pieces; joint type, machining parameter and preheating temperature take placed. In this investigation 3 mentioned tool types that are popular in FSW tested and the results completed other aspects of the process. Hope this paper can open a new horizon in experimental investigation of mechanical properties for friction stir welded joint with other different type of tools like oval shape probe, paddle shape probe, three flat sided probe, and three sided re-entrant probe and other materials and alloys like titanium or steel in near future.

Keywords—Friction stir welding (FSW), tool, CNC milling machine, aluminum alloy H20, Vickers hardness test, tensile test, straight cylindrical tool, taper cylindrical tool, triangular tool.

I. INTRODUCTION

Friction stir welding is a welding process recently developed in 1991 using for Al, Mg, Cu, Ti, for work pieces that could not welded by conventional types of welding and recently developed too much in different application because of economical and quality consideration [1]. Modern types of tools developed recently for harder type of material work pieces like different type of steels [2]. Besides, different types of machines developed for this purpose. FSW can done by an ordinary CNC milling machine for small work pieces to professional single purpose robotic machine in orbital FSW in steel pipes for oil industries [3]. The schematic of friction stir process shown in Fig. 1. In addition, the FSW process can be modeled as a metalworking process in terms of five conventional metal working zones like preheat, initial deformation, extrusion, forging and post heating or cooling down. Furthermore, preheating generally increase hardness and Tensile strength qualification therefore preheating recommended both when the friction stir welded joint under horizontal or vertical high loads [4]. Several process parameter optimizations developed for friction stir welding in recent years.

Base these modeling techniques the tool geometry have dominate effects in friction stir welding processes. The effect of bonding time and homogenization treatment on microstructure development and improvement is also considerable. Post bond heat treatment on mechanical Properties, micro hardness and shear strength of joints were also considered as important factors in any welding, joining or metal forming processes [5]. However, preheating preferred in friction stir welding processes and that is because of the nature of the process that based on heat generated by friction existences between tool and work pieces materials.

II. LITERATURE REVIEW AND FUTURE INVESTIGATIONS

Three main types of research take placed in previous investigations on friction stir welding first are mathematical and computer base modeling of the process. There are too many investigation area in FSW modeling and the number of areas are increasing every day some of the previous investigations are, Prediction of Friction Stir Welding Characteristic Using Neural Network, Numerical Simulation of the Friction Stir Welding Process, Heat Transfer Analysis during Friction Stir Welding, 3D numerical simulation of the three stages of Friction Stir Welding based on friction parameters calibration, 3D numerical simulation of the three stages of Friction Stir Welding based on friction parameters calibration, Numerical Simulation of Transient Temperature in Friction Stir Welding, Finite element modeling and failure prediction of friction stir welded blanks and Optimizing the Process Parameters of FSW. The ANOVA (Analysis of...
different types of tool for other popular materials in friction and could open new doors for further investigations with other make cause to complete other previous investigations in FSW in any related field or industries. The result of this project will material can help the further design processes more effectively friction stir welding [4], [9]. The popularity of tools and tool used in this project. Aluminum alloy H20 is perfect for processes straight cylindrical, taper cylindrical and triangular type of tools mechanical properties discussed for aluminum 

Table I

<table>
<thead>
<tr>
<th>No</th>
<th>Part name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3-axis machine center</td>
<td>Spinnner</td>
</tr>
<tr>
<td>2</td>
<td>Model</td>
<td>BFW45</td>
</tr>
<tr>
<td>3</td>
<td>Spindle driver</td>
<td>Servo motor</td>
</tr>
<tr>
<td>4</td>
<td>Spindle range</td>
<td>10-6000 RPM</td>
</tr>
<tr>
<td>5</td>
<td>Tool holder</td>
<td>ISO 40</td>
</tr>
<tr>
<td>6</td>
<td>Cutting fluid</td>
<td>NR</td>
</tr>
<tr>
<td>7</td>
<td>Tool</td>
<td>HSS</td>
</tr>
<tr>
<td>8</td>
<td>Work piece</td>
<td>Aluminum Alloy H20</td>
</tr>
<tr>
<td>9</td>
<td>Movement</td>
<td>610*450</td>
</tr>
<tr>
<td>10</td>
<td>Bed size</td>
<td>800*500</td>
</tr>
</tbody>
</table>

III. MATERIAL AND METHODS

The CNC milling machine BMV 45, aluminum alloy work piece H20, rotational speed 1000RPM, feed 20 mm and travel speed 20mm/m are used in this project. The CNC milling machine specifications are as following.

Fig. 2 CNC milling machine BMV 45
IV. ALUMINUM ALLOY H20 AND H20

Because of suitable corrosion resistance, strength properties, machinability and control in grain structure, aluminum alloy H20 is a good material in friction stir welding [13]. In addition, aluminum alloy H20 successfully used in previous investigations with the same CNC milling machine BMV45 [4], [9].

![Fig. 3 Aluminum alloy H20 work piece](image)

Fig. 3 Aluminum alloy H20 work piece

![Fig. 4 Work piece Dimension (conventional joint)](image)

Fig. 4 Work piece Dimension (conventional joint)

Aluminum alloy H20 and H20

Aluminum alloy H20 and H20

![Al2O3 surface coating made of cemented carbide comprising WC grains that is a kind of super abrasive tools suitable for hard steel work pieces recently developed in Sweden [11]. Straight cylindrical, taper cylindrical and triangular tools used in this investigation for the mentioned work piece (mentioned dimension and materials). The tool material is High speed steel (Wc-Co) and the tools dimension are as following.](image)

![Fig. 5 Friction stir welding straight cylindrical tool](image)

Fig. 5 Friction stir welding straight cylindrical tool

![Fig. 6 Friction stir welding taper cylindrical tool](image)

Fig. 6 Friction stir welding taper cylindrical tool

![Fig. 7 Friction stir welding triangular tool](image)

Fig. 7 Friction stir welding triangular tool

V. TYPE OF TOOLS

A wide variety of tools used for friction stir process (FSP) and friction stir welding (FSW) in different geometry and different materials. Some of the most common types of tools are triangular, square and cylindrical that could be threaded or tapered like threaded cylindrical (TH), taper cylindrical (TC) and straight cylindrical (SC) that all considered as conventional tools. Besides, oval shape, paddle shape developed too much recently for different applications and the displacement between threaded can be adjusted for different applications like changing spiral form and flared probe [14]. In addition, The tool material can be changed from some conventional types like High speed steel (Wc-Co) in aluminum work pieces in ordinary application to some tools that made of cemented tungsten carbide with nickel and a Al2O3 surface coating made of cemented carbide comprising WC grains that is a kind of super abrasive tools suitable for hard steel work pieces recently developed in Sweden [11]. Straight cylindrical, taper cylindrical and triangular tools used in this investigation for the mentioned work piece (mentioned dimension and materials). The tool material is High speed steel (Wc-Co) and the tools dimension are as following.

Effect of welding parameters on the microstructure of welded joint and welded product quality is one of the most important considerations in FSW process parameter optimization. Tool geometry has the most important effects on the welding joint quality. Some of the aluminum alloys plates are under rolling to reduce the thickness especially cold rolling process. The mechanical and metallurgical behavior of welded joints varied by the direction of friction stir welding for example in the same direction with rolling process or perpendicular with the direction of rolling process or angular with the direction of rolling process therefore the direction of friction stir welding is one of the important process parameter beside the rotational speed, travel speed, depth of welding, feed, tool geometry, work piece geometry, tool material and work piece material. The previous investigations shows superior mechanical properties for the weldments with weld direction parallel to the rolling direction as compared with the joints with weld direction perpendicular to the rolling direction [15].

Thomas found that the addition of flat features can change material movement around a probe. This is due to the increased local deformation and turbulent flow of the plasticized material by the flats acting as paddles demonstrated that a reduction in transverse force and tool torque was directly proportional to the number of the flats placed on a tapered shoulder [16].
Particular torque wrench has an accuracy of ± 2% from 20% to 100% of full scale or 7.6 to 27.10 Nm. Below this range, it has an accuracy of ± 3 percentage. The torque wrench and adapter tool are shown in Fig. 8.

The torque wrench also features audible tones and LEDs to inform the user when 90% of the desired torque is reached, when 100% of the desired torque is reached and if the desired torque is exceeded. The wrench also displays the maximum torque experienced after any single load is applied. This was convenient for calibration purposes. The torque calibration was performed by first establishing wireless communication and then applying torques of 5, 10, 15, 20, and 25 N-m in first the CW 85 and then the CCW directions. The actual, maximum torque reached at each interval was recorded and these values were then matched to the corresponding peak voltages that were recorded. The raw voltage data along with the table of peak values can be found in technical documents. Fig. 9 displays the calibration curve resulting from the compiled torque and voltage data.

The calibration was linear and the signal to noise ratio documented in the raw data file in technical documents was impressive. The calibration also marked the end of the first stage of development for the force transducer. The system is completely implemented for one force measurement and is readily upgradable to measure additional forces and temperature [17].

Triangular tool have more pin length that directly in touch with work piece materials then the pin pressure and tool temperature increased significantly. Straight cylindrical tool have less pin length that directly in touch with work piece materials then the pin pressure and temperature is minimum compare to two others.

The Vickers hardness numbers of the welded joint varied by distance from the weld center. The surface quality of the welded joint by triangular tool is better than the surface quality of welded joint by taper cylindrical tool. Besides, the surface equality of welded joint by straight cylindrical tool was not satisfactory. On the other hand the hardness characteristic of welded joint by taper cylindrical tool was the best. In addition, the hardness characteristic of welded joint by taper cylindrical tool is better than welded joint by triangular tool.

Fig. 9 Torque Calibration Curve

VI. MECHANICAL PROPERTIES FRICTION STIR WELDED JOINT RESULTS

Mentioned dimension aluminum alloy H20-H20 conventional joint with the mentioned process parameter welded by CNC milling machine three times first with triangular tool after that with taper cylindrical tool and finally with straight cylindrical tool. Besides, both vicker hardness and tensile strength test performed to the welded joints. The results compared and made conclusion.

The longitudinal force increase by increasing the pin length because of that pin pressure increasing sharply and this process will have direct effect to torque adjustment of different type of tools. The pin pressure and tool temperature increased significantly.

Fig. 10 Pin length (mm) via longitudinal force (N) different type of tools [18]

Fig. 11 Friction stir welded aluminum alloy H20 triangular tool

The friction stir welded aluminum alloy H20 triangular tool
The vicker hardness testing results obtained by transformation the data from Table II to Fig. 14 in a compact graph to have better understanding of different welded joints behavior in a glance and making conclusion more easily.

![Fig. 14 Vicker hardness numbers](image)

<table>
<thead>
<tr>
<th>Type of Joint</th>
<th>Tensile Strength in MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friction stir welded joint with triangular tool</td>
<td>138</td>
</tr>
<tr>
<td>Friction stir welded joint with taper cylindrical tool</td>
<td>122</td>
</tr>
<tr>
<td>Friction stir welded joint with straight cylindrical tool</td>
<td>113</td>
</tr>
</tbody>
</table>

The tensile strength testing results obtained by transformation the data from Table III and Fig. 15 in a compact graph to have better understanding of different welded joints behavior in a glance and making conclusion more easily.

In addition, Table III represented the results of the tensile testing.
stir welded joints with triangular tool have a good surface quality and tensile strength. On the other hand Friction stir welded joints with straight cylindrical tool have excellent hardness characteristics but the surface quality is not satisfactory and the welded joints usually need some surface treatments processes. In conclusion when the work pieces are under hard vertical loads that are better to choose friction stir welded joints with straight cylindrical tool but when the work pieces are under hard horizontal loads the friction stir welded joints with triangular tool preferred in choosing FSW process parameter.

APPENDIX

This CNC program is used in our CNC milling machine (BMV45).

00010(DIA 16.0EM 45 DEGREE TIP CUTTER)
N01 (FRICTION STIR WELDING)
N02 (DATE 11-01-2010 TIME 20:15:08)
N03 G0G17G4G4G9G5G8G90
N04 G5.1Q1R10
N05 G91G2Z0
N06 M03S950
N07 G90G54X0.0Y0.0
N08 G43H6Z50
N09 G1Z2F800
N10 G1Z-3.8F16
N11 X170
N12 G0Z50.0M09
N13 M05
N14 G91G28Z0
N15 G5.1Q0

ACKNOWLEDGEMENTS

My profound thanks and deep sense of gratitude to my dear professor Manzoor Hussain for his guidance and encouragement, which were instrumental in the successful completion of this paper.

REFERENCES

[8] Two Day workshop on Friction Welding & Friction Stir Welding
International Center for Advancement of Manufacturing Technology 24
Conventional and Overlap Joints Mechanical Properties. Manufacturing
abrasive tool. Published in 2013-03-14.
D.
Microstructure in EN AW-6060 Aluminum Alloy Combined with
305.
the Effect of Rolling Direction on the IMC Formed During Friction Stir
Welding of AA7075 Alloys. The IUP Journal of Mechanical
Engineering, 3: 52-54.
for friction stir welding and processing. Canadian Metallurgical
Quarterly, 51: 3-7.
stir welding. Thesis Submitted to the Faculty of the Graduate School of
Vanderbilt University in partial fulfillment of the requirements for the
degree of Master of Science in Mechanical Engineering: 5-17.
friction stir welding tools. Journal of Science and Technology in
Welding and Joining, 16: 324-325.
Catamaran Building. In: ESAB Aluminum 2000 symposium 29th-30th
Feed Rate on Mechanical Behaviors in EN-AW6060 Aluminum Alloys
Bonded by Using Friction Stir Welding. World Applied Sciences