Exponential Stability Analysis for Uncertain Neural Networks with Discrete and Distributed Time-Varying Delays

Miaomiao Yang, Shouming Zhong

Abstract—This paper studies the problem of exponential stability analysis for uncertain neural networks with discrete and distributed time-varying delays. Together with a suitable augmented Lyapunov Krasovskii function, zero equalities, reciprocally convex approach and a novel sufficient condition to guarantee the exponential stability of the considered system. The several exponential stability criterion proposed in this paper is simpler and effective. Finally, numerical examples are provided to demonstrate the feasibility and effectiveness of our results.

Keywords—Exponential stability, Uncertain Neural networks, LMI approach, Lyapunov-Krasovskii function, Time-varying.

I. INTRODUCTION

RECURRENT years neural networks have been studied extensively and have been widely applied within a kind of engineering fields such as associative memories, neurobiology, population dynamics, and computing technology[1-9]. Existing stability criteria can be classified into two categories, that is, delay-independent ones and delay-dependent ones. It is well known that delay-independent ones are usually more conservative than the delay-dependent ones, so much attention has been paid in recent years to the study of delay-dependent stability conditions.

Although neural networks can be implemented by very large scale integrated circuits, there inevitably exist some delays in neural networks due to the limitation of the speed of transmission and switching of signals. It is well known that time-delay is usually a cause of instability and oscillations of recurrent neural networks. Therefore, the problem of stability of recurrent neural networks with time-delay is of importance in both theory and practice.

The problem of exponential stability analysis for uncertain neural networks with discrete and distributed time-varying delays has been studied by many investigators in the past years. Many known results, the time-varying delays varies from 0 to an upper bound, but in practice the delay of lower bound is not restricted to be 0. In this paper, we considered the relationship between the time-varying delay and its lower and upper bound, by means of the Lyapunov-Krasovskii function and the linear matrix inequality(LMI) approach. Note that LMIs can be easily solved by using the Matlab LMI toolbox, Finally, numerical examples given to illustrate the effectiveness of the proposed methods.

Notation: Throughout this paper, the superscripts ' -1', 'T' stand for the inverse and transpose of a matrix, respectively. \(\mathbb{R}^n\) denotes an n-dimensional Euclidean space; \(\mathbb{R}^{m \times n}\) is the set of all \(m \times n\) real matrices; \(P > 0\) means that the matrix \(P\) is symmetric positive definite; \(I\) is an appropriately dimensional identity matrix.

II. PROBLEM STATEMENT

Consider the following neural networks with time-varying delays:

\[
\begin{align*}
\dot{z}(t) &= -(C + \Delta C(t))z(t) + (A + \Delta A(t))g(z(t)) \\
&
\quad + (B + \Delta B(t))g(z(t - \tau(t))) + (D + \Delta D(t)) \\
&
\quad \times \int_{t-d}^{t} g(z(s))ds + \mu
\end{align*}
\]

(1)

where \(z(t) = [z_1(t), z_2(t), \ldots, z_n(t)]^T \in \mathbb{R}^n\) is the neuron vector, \(g(z(t)) = [g_1(z_1(t)), g_2(z_2(t)), \ldots, g_n(z_n(t))]^T \in \mathbb{R}^n\) is neuron activation function, \(C = \text{diag}\{c_1, c_2, \ldots, c_n\} > 0\), \(A \in \mathbb{R}^{n \times n}\), \(B \in \mathbb{R}^{n \times n}\) are the connection weight matrices, and the delayed connection weight matrices, respectively, \(\mu = [\mu_1, \mu_2, \ldots, \mu_n]^T\) is constant input vector, \(\Delta C(t), \Delta A(t), \Delta B(t), \Delta D(t)\) are the parametric uncertainties of system matrices of the form

\[
\Delta C(t) = WF(t)E_c, \Delta A(t) = WF(t)E_a, \Delta B(t) = WF(t)E_b, \Delta D(t) = WF(t)E_d
\]

(2)

with

\[
F^T(t)F(t) \leq I, \forall t \geq 0.
\]

(3)

and \(\tau(t)\) is a continuous time-varying function which satisfies

\[
0 \leq \tau_1 \leq \tau(t) \leq \tau_2, \dot{\tau}(t) \leq u
\]

(4)

where \(\tau\) and \(u\) are constants.

The following assumption is made in this paper.

This work was supported by the National Basic Research Program of China(2011CB712501) and the National Nature Science Foundation of China(61273015).

Miaomiao Yang Shouming Zhong are with the School of Mathematics Science, University Electronic Science and Technology of China, Chengdu 611731, PR China.

Shouming Zhong is with Key Laboratory for NeuroInformationof Ministry of Education, University of ElectronicScience and Technology of China, Chengdu 611731, PR China.

Email address: miaomiaoyang1989@163.com
Assumption 1. The neuron activation functions $g_i(\cdot)$ in (1) are bounded and satisfy
\[
\gamma_i^- \leq \frac{g_i(x) - g_i(y)}{x - y} \leq \gamma_i^+ , \quad x, y \in \mathbb{R}, x \neq y, i = 1, 2, \ldots, n
\]

Where γ_i^-, γ_i^+ ($i = 1, 2, \ldots, n$) are positive constants.

Assumption 1 guarantees the existence of an equilibrium point of system (6). Denote that $z^* = [z_1^*, z_2^*, \ldots, z_n^*]$ is the equilibrium point. Using the transformation $x(\cdot) = z(\cdot) - z^*$ system (1) can be converted to the following error system:
\[
\dot{x}(t) = -(C + \Delta C(t))x(t) + (A + \Delta A(t))f(x(t)) + (B + \Delta B(t))f(x(t) - \tau(t)) + (D + \Delta D(t))
\]
\[
\times \int_{t-\delta(t)}^{t} f(x(s))ds
\]

where $x(t) = [x_1(t), x_2(t), \ldots, x_n(t)]^T \in \mathbb{R}^n$ is the neuron vector, $f(x(t)) = [f_1(x_1(t)), f_2(x_2(t)), \ldots, f_n(x_n(t))]^T \in \mathbb{R}^n$ denotes the neuron activation function, $f_i(x(\cdot)) = g_i(z_i(\cdot)) - g_i(z_i^*)$, $i = 1, 2, \ldots, n$.

\[
\gamma_i^- \leq \frac{f_i(x_i(t)) - f_i(0)}{x_i(t)} \leq \gamma_i^+ , f_i(0) = 0, i = 1, 2, \ldots, n
\]

System (6) can be written as
\[
\dot{x}(t) = -C x(t) + Af(x(t)) + Bf(x(t) - \tau(t)) + D\int_{t-\delta(t)}^{t} f(x(s))ds + Wp(t)
\]
\[
p(t) = F(t)(-E_1x(t) + E_2f(x(t)) + E_3f(x(t) - \tau(t))) + E_4\int_{t-\delta(t)}^{t} f(x(s))ds
\]

By translating d to function $d(t)$, we have
\[
\dot{x}(t) = -C x(t) + Af(x(t)) + Bf(x(t) - \tau(t)) + D\int_{t-\delta(t)}^{t} f(x(s))ds + Wp(t)
\]
\[
p(t) = F(t)(-E_1x(t) + E_2f(x(t)) + E_3f(x(t) - \tau(t))) + E_4\int_{t-\delta(t)}^{t} f(x(s))ds
\]

where $0 \leq \delta(t) \leq d$.

Definition 1. The equilibrium point of system (16) is said to be globally exponentially stable, if there exist scalars $k \geq 0$ and $\beta > 0$ such that
\[
\|x(t)\| \leq \beta e^{-kt}\sup_{-\tau \leq s \leq 0} \|\phi(s) - z^*\|, \forall t > 0.
\]

Lemma 1. [9] For any constant positive matrix $Z = Z^T > 0$, $Z \in \mathbb{R}^{n \times n}$, scalars $h_1 > h_2 > 0$, such that the following integrations are well defined, then
\[
-(h_2 - h_1) \int_{h_2}^{h_1} x^T(s)Zx(s)ds \leq -\int_{h_2}^{h_1} x^T(s)dsZ \int_{h_2}^{h_1} x(s)ds
\]

Lemma 2. [10] The following inequalities are true:
\[
0 \leq \int_{0}^{x(t)} [f_i(s) - \gamma_i^- s]ds \leq [f_i(x_i(t)) - \gamma_i^- x_i(t)]x_i(t)
\]
\[
0 \leq \int_{0}^{x(t)} [\gamma_i^+ s - f_i(s)]ds \leq [\gamma_i^- x_i(t) + f_i(x_i(t))]x_i(t)
\]

Lemma 3. [11] For all real vectors a, b and all matrix $Q > 0$ with appropriate dimensions, if follows that:
\[
2a^Tb \leq a^TQa + b^TQ^{-1}b
\]

Lemma 4. [12] Given symmetric matrices Ω and D, E, F of appropriate dimensions,
\[
\Omega + D F(t)E + E^TF(t)D^T < 0
\]

for all $F(t)$ satisfying $F(t)^TF(t) \leq I$, if and only if there exists some $\varepsilon > 0$ such that
\[
\Omega + \varepsilon DD^T + \varepsilon^{-1}E^TE < 0.
\]

III. MAIN RESULTS

In this section, we propose a new exponential criterion for the uncertain neural networks with time-varying delays system (9). First, we let $\Delta C(t) = 0, \Delta A(t) = 0, \Delta B(t) = 0$ and $\Delta D(t) = 0$, then the system as following:
\[
\dot{x}(t) = -C x(t) + Af(x(t)) + Bg(x(t) - \tau(t)) + D\int_{t-\delta(t)}^{t} g(z(s))ds
\]
\[
+ D\int_{t-\delta(t)}^{t} g(z(s))ds
\]

Now, we have the following main results.

Theorem 1. For given scalars $\Gamma = diag(\gamma_1, \gamma_2, \ldots, \gamma_n)$, $\Gamma_2 = diag(\gamma_1^2, \gamma_2^2, \ldots, \gamma_n^2)$, $d \geq 0$, $u \leq 1$, $\tau_1 = \tau_2 = \tau_1$, the system (16) is globally exponential stable with the exponential convergence rate index k if there exist symmetric positive definite matrices, $Q_1 (i = 1, 2, \ldots, 6), R_i (i = 1, 2, 3, 4), P_i, S = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix}$, positive diagonal matrices $M_1, M_2, \Lambda_1 = diag(\lambda_1, \lambda_2, \ldots, \lambda_n)$, $\Lambda_2 = diag(\delta_1, \delta_2, \ldots, \delta_n)$ such that the following LMIs hold:
\[
E = \begin{bmatrix} e_{11} & e_{12} & e_{13} & 0 & 0 & 0 & 0 & 0 & e_{19} \\ * & e_{22} & e_{23} & 0 & 0 & 0 & 0 & 0 & e_{29} \\ * & * & e_{33} & e_{34} & 0 & 0 & 0 & 0 & e_{39} \\ * & * & * & e_{44} & e_{45} & e_{46} & 0 & 0 & 0 \\ * & * & * & * & e_{55} & e_{56} & e_{57} & 0 & 0 \\ * & * & * & * & * & e_{66} & e_{67} & e_{68} & 0 \\ * & * & * & * & * & * & e_{77} & e_{78} & 0 \\ * & * & * & * & * & * & * & e_{88} & 0 \\ * & * & * & * & * & * & * & * & e_{99} \end{bmatrix} \leq 0
\]
$$F = \begin{bmatrix} e_{11} & e_{12} & e_{13} & 0 & 0 & 0 & 0 & 0 & e_{19} \\ e_{22} & e_{23} & e_{24} & 0 & 0 & 0 & 0 & 0 & e_{29} \\ e_{32} & e_{33} & e_{34} & 0 & 0 & 0 & 0 & 0 & e_{39} \\ e_{42} & e_{43} & e_{44} & 0 & 0 & 0 & 0 & 0 & e_{49} \\ f_{44} & f_{45} & f_{46} & f_{47} & 0 & 0 & 0 & 0 & e_{59} \\ f_{55} & f_{56} & f_{57} & 0 & 0 & 0 & 0 & 0 & e_{69} \\ f_{66} & f_{67} & f_{68} & 0 & 0 & 0 & 0 & 0 & e_{79} \\ f_{77} & f_{78} & f_{79} & 0 & 0 & 0 & 0 & 0 & e_{89} \\ * & * & * & * & * & * & * & * & * \\

e_{11} = 2kP - PC - CP - 4k\Gamma_1A_1 - C(\Gamma_2A_2 - \Gamma_1A_1) + \left(\frac{\Gamma_2}{3}\right)^2C(R_1 + R_2 + R_3)C - (\Gamma_2A_2 - \Gamma_1A_1)C + \sum_{i=1}^{n} Q_i + 4k\Gamma_1A_2 - 2\Gamma_1M_1\Gamma_2$$

$$e_{12} = PA + 2k\Lambda_1 - (\Lambda_1 - \Lambda_2)C + (\Gamma_2A_2 - \Gamma_1A_1)A - 2\Delta_1 \left(\frac{\Gamma_2}{3}\right)^2C(R_1 + R_2 + R_3)A + M_1(\Gamma_1 + \Gamma_2)$$

$$e_{13} = PB + (\Gamma_2A_2 - \Gamma_1A_1)B - \left(\frac{\Gamma_2}{3}\right)^2C(R_1 + R_2 + R_3)B$$

$$e_{19} = PD + (\Gamma_2A_2 - \Gamma_1A_1)D - \left(\frac{\Gamma_2}{3}\right)^2C(R_1 + R_2 + R_3)D$$

$$e_{22} = (A_1 - \Lambda_2)A - 2M_1 + \left(\frac{\Gamma_2}{3}\right)^2A^T(R_1 + R_2 + R_3)A + A^T(A_1 - \Lambda_2)$$

$$e_{23} = (A_1 - \Lambda_2)B + \left(\frac{\Gamma_2}{3}\right)^2A^T(R_1 + R_2 + R_3)B$$

$$e_{29} = (A_1 - \Lambda_2)D + \left(\frac{\Gamma_2}{3}\right)^2A^T(R_1 + R_2 + R_3)D$$

$$e_{33} = \left(\frac{\Gamma_2}{3}\right)^2B^T(R_1 + R_2 + R_3)B - \left(\frac{\Gamma_2}{3}\right)^2A^T(R_1 + R_2 + R_3)A - \left(\frac{\Gamma_2}{3}\right)^2A^T(R_1 + R_2 + R_3)A$$

$$e_{39} = \left(\frac{\Gamma_2}{3}\right)^2B^T(R_1 + R_2 + R_3)D$$

$$e_{44} = -e^{-2k\tau_2}(1 - u)Q_6, e_{46} = M_2(\Gamma_1 + \Gamma_2)$$

$$e_{45} = e^{-2k\tau_2}(1 - u)Q_6, e_{46} = e^{-2k\tau_2}Q_3$$

$$e_{55} = e^{-2k\tau_2}Q_3, e_{56} = e^{-2k\tau_2}S_{11}$$

$$e_{56} = e^{-2k\tau_2}S_{12}, e_{57} = e^{-2k\tau_2}S_{13}$$

$$e_{66} = e^{-2k\tau_2}Q_3 + S_{11} + R_3 + R_2$$

$$e_{67} = -e^{-2k\tau_2}R_2 + e^{-2k\tau_1}S_{23}$$

$$e_{68} = -e^{-2k\tau_2}R_2 + e^{-2k\tau_1}S_{23}$$

$$e_{69} = -e^{-2k\tau_2}R_2 + e^{-2k\tau_1}S_{23}$$

$$e_{77} = e^{-2k\tau_1}S_{33} - e^{-2k\tau_2}R_2 + e^{-2k\tau_1}Q_4$$

$$e_{78} = -e^{-2k\tau_2}R_2 + e^{-2k\tau_1}S_{23}$$

$$e_{88} = -e^{-2k\tau_2}R_2 + e^{-2k\tau_1}S_{23}$$

$$e_{99} = \left(\frac{\Gamma_2}{3}\right)^2D^T(R_1 + R_2 + R_3)D - e^{-2k\tau_4}R_4$$

$$f_{14} = -e^{-2k\tau_2}(1 - u)Q_1 - 2e^{-2k\tau_2}R_2 - 2\Gamma_1M_2\Gamma_2$$

$$f_{16} = e^{-2k\tau_1}R_2, f_{17} = e^{-2k\tau_2}R_2$$

$$f_{56} = e^{-2k\tau_1}S_{12} + e^{-2k\tau_1}R_3$$

$$f_{67} = -e^{-2k\tau_2}S_{12} + e^{-2k\tau_1}S_{23}$$

$$f_{78} = e^{-2k\tau_2}S_{23} + e^{-2k\tau_2}R_1$$

$$f_{77} = e^{-2k\tau_2}(1 - u)Q_1 - 2e^{-2k\tau_2}R_1 - 2\Gamma_1M_2\Gamma_2$$

$$g_{44} = -e^{-2k\tau_2}(1 - u)Q_1 - 2e^{-2k\tau_2}R_1 - 2\Gamma_1M_2\Gamma_2$$

$$g_{47} = 2e^{-2k\tau_2}R_1, g_{48} = 2e^{-2k\tau_2}R_2$$

$$g_{66} = -e^{-2k\tau_2}R_2 + e^{-2k\tau_1}S_{23}$$

Proof: Construct a Lyapunov function as follows:

$$V(x_i) = \sum_{i=1}^{6} V_i(x_i)$$

where

$$V_1(x_i) = e^{2kt}x^T(t)Px(t)$$

$$V_2(x_i) = 2e^{2kt}\sum_{i=1}^{n}\int_{x_i(t)}^{x_{f_i(t)}} \lambda_i(f_i(s) - g_i(s))ds$$

$$+ \int_{0}^{x_i(t)} \delta_i(g_i(s) - f_i(s))ds$$

$$V_3(x_i) = \int_{-\tau(t)}^{t} e^{2kx^T(s)Q_1x(s)}ds$$

$$+ \int_{-\tau(t)}^{t} e^{2kx^T(s)Q_2x(s)}ds$$

$$+ \int_{-\tau(t)}^{t} e^{2kx^T(s)Q_3x(s)}ds$$

$$+ \int_{-\tau(t)}^{t} e^{2kx^T(s)Q_4x(s)}ds$$

$$+ \int_{-\tau(t)}^{t} e^{2kx^T(s)Q_5x(s)}ds$$

$$+ \int_{-\tau(t)}^{t} e^{2kx^T(s)Q_6x(s)}ds$$

$$+ \int_{-\tau(t)}^{t} e^{2kx^T(s)Q_7x(s)}ds$$

$$+ \int_{-\tau(t)}^{t} e^{2kx^T(s)Q_8x(s)}ds$$

$$+ \int_{-\tau(t)}^{t} e^{2kx^T(s)Q_9x(s)}ds$$

$$V_4(x_i) = \int_{-\tau(t)}^{t} e^{2kx^T(s)Q_1x(s)}ds$$

$$\times \left[\begin{array}{c} x(s) \\
 x(s - \frac{2\tau_1}{3}) \\
 x(s - \frac{2\tau_2 - \tau_1}{3}) \\
 x(s - \frac{2\tau_1}{3}) \\
 x(s - \frac{2\tau_1}{3}) \\
 x(s - \frac{2\tau_1}{3}) \\
 \end{array} \right] ds$$
\[V_5(x_i) = \frac{\tau_2 - \tau_1}{3} \int_{-\tau_1}^{2\tau_2 + \tau_1} \int_{t+\theta}^{t} e^{2ks} \dot{x}(s)^T R_1 \dot{x}(s) ds d\theta + \frac{\tau_2 - \tau_1}{3} \int_{-2\tau_2 + \tau_1}^{2\tau_1 + \tau_2 - \tau_1} \int_{t+\theta}^{t} e^{2ks} \dot{x}(s)^T R_2 \dot{x}(s) ds d\theta + \frac{\tau_2 - \tau_1}{3} \int_{-2\tau_2 + \tau_1}^{2\tau_2 - \tau_1} \int_{t+\theta}^{t} e^{2ks} \dot{x}(s)^T R_3 \dot{x}(s) ds d\theta \]

\[V_6(x_i) = d \int_{-d}^{0} e^{2ks} f^T(x(s)) R_4 f(x(s)) \]

The time derivative of \(V(x_i) \) along the trajectory of system (16) is given by

\[\dot{V}(x_i) = \sum_{i=1}^{6} \dot{V}_i(x_i) \]

where

\[\dot{V}_1(x_i) = 2ke^{2kt} x^T(t) P x(t) + 2e^{2kt} x^T(t) P \dot{x}(t) \]

\[\dot{V}_2(x_i) = 4ke^{2kt} \sum_{i=1}^{n} \int_{t}^{t_{\tau_i}} \lambda_i(x_i(s) - \gamma_i s) ds + \int_{t}^{t_{\tau_i}} \delta_i(x_i(s)) ds + e^{2kt} f^T(x(t)) x(t) \]

\[-x^T(t) \Gamma_1 \Delta \dot{x}(t) + (x^T(t) \Gamma_2 - f^T(x(t)) \Delta \dot{x}(t) \]

\[V_3(x_i) \leq e^{2kt} x^T(t) \left(\sum_{i=1}^{6} Q_i x(t) - e^{2k(t-\tau_1)}(1-u) \right) \]

\[\times x^T(t) \left(x(t-\tau(t)) Q_1 x(t-\tau(t)) + e^{2kt} f(x(t)) Q_0 f^T(x(t)) \right) \]

\[-e^{2k(t-\tau_1)} x^T(t-\tau_1) Q_2 x(t-\tau_1) \]

\[-e^{2k(t-\tau_1)} x^T(t-\tau_1) Q_3 x(t-\tau_1) \]

\[-e^{2k(t-\tau_1)} x^T(t-\tau_1) Q_4 x(t-\tau_1) \]

\[-e^{2k(t-\tau_1)} x^T(t-\tau_1) Q_5 x(t-\tau_1) \]

\[-e^{2k(t-\tau_1)} (1-u) f(x(t-\tau(t))) Q_6 f^T(x(t-\tau(t))) \]

\[\dot{V}_4(x_i) \leq e^{2k(t-\tau_1)} \left[\begin{array}{c} x(t-\tau_1) \\ x(t-\tau_1) \end{array} \right] \left[\begin{array}{c} S_{11} & S_{12} & S_{13} \\ S_{22} & S_{23} & S_{24} \\ S_{33} & \end{array} \right] \]

\[\times \left[\begin{array}{c} x(t-\tau_1) \\ x(t-\tau_1) \end{array} \right] \]

\[-e^{2k(t-\tau_1)} \left[\begin{array}{c} x(t-\tau_1) \\ x(t-\tau_1) \end{array} \right] \left[\begin{array}{c} S_{11} & S_{12} & S_{13} \\ S_{22} & S_{23} & S_{24} \\ S_{33} & \end{array} \right] \]

\[\times \left[\begin{array}{c} x(t-\tau_1) \\ x(t-\tau_1) \end{array} \right] \]
\[-\frac{\tau_2 - \tau_1}{3} \int_1^{t-\tau_1} e^{2ks} x^T(s) R_1 x(s) ds \leq -e^{2k(t - \frac{\tau_2 + \tau_1}{3})} \]
\[\times [x(t - \tau_1) - x(t - \frac{2\tau_1 + \tau_2}{3})]^T R_1 [x(t - \tau_1) - x(t - \frac{2\tau_1 + \tau_2}{3})] \]
\[- x(t - \frac{2\tau_1 + \tau_2}{3})] \]
\[-2 \frac{\tau_2 - \tau_1}{3} \int_1^{t-\tau_1} e^{2ks} x^T(s) R_2 x(s) ds \leq -e^{2k(t - \frac{2\tau_2 + \tau_1}{3})} \]
\[\times [x(t - \frac{2\tau_1 + \tau_2}{3}) - x(t - \frac{2\tau_1 + \tau_2}{3})]^T R_2 [x(t - \frac{2\tau_1 + \tau_2}{3}) - x(t - \frac{2\tau_1 + \tau_2}{3})] \]
\[- x(t - \frac{2\tau_1 + \tau_2}{3})] \]

\[\dot{V}_6(x) = d^2 e^{2kt} f^T(x(s)) R_1 f(x(s)) \]
\[= -d^2 e^{2kt} f^T(x(t)) R_1 f(x(t)) \]
\[\leq -e^{2k(t-d)} \int_{t-d}^t f^T(x(s)) ds R_1 \int_{t-d}^t f(x(s)) ds \]

\[(3) \text{When } \frac{\tau_2 + \tau_1}{3} \leq \tau(t) \leq \tau_2. \text{ Based on the bound lemma of [16], we have} \]
\[-\frac{\tau_2 - \tau_1}{3} \int_1^{t-\tau_1} e^{2ks} x^T(s) R_1 x(s) ds \leq -e^{2k(t - \frac{2\tau_1 + \tau_2}{3})} \]
\[\times [x(t - \frac{2\tau_1 + \tau_2}{3}) - x(t - \frac{2\tau_1 + \tau_2}{3})]^T R_1 [x(t - \frac{2\tau_1 + \tau_2}{3}) - x(t - \frac{2\tau_1 + \tau_2}{3})] \]
\[- x(t - \frac{2\tau_1 + \tau_2}{3})] \]

\[\dot{V}_6(x) = d^2 e^{2kt} f^T(x(s)) R_1 f(x(s)) \]
\[= -d^2 e^{2kt} f^T(x(t)) R_1 f(x(t)) \]
\[\leq -e^{2k(t-d)} \int_{t-d}^t f^T(x(s)) ds R_1 \int_{t-d}^t f(x(s)) ds \]

\[(31) \]

\[\dot{V}_6(x) = d^2 e^{2kt} f^T(x(s)) R_1 f(x(s)) \]
\[= -d^2 e^{2kt} f^T(x(t)) R_1 f(x(t)) \]
\[\leq -e^{2k(t-d)} \int_{t-d}^t f^T(x(s)) ds R_1 \int_{t-d}^t f(x(s)) ds \]

\[(32) \]

\[\dot{V}_6(x) = d^2 e^{2kt} f^T(x(s)) R_1 f(x(s)) \]
\[= -d^2 e^{2kt} f^T(x(t)) R_1 f(x(t)) \]
\[\leq -e^{2k(t-d)} \int_{t-d}^t f^T(x(s)) ds R_1 \int_{t-d}^t f(x(s)) ds \]

\[(33) \]

In order to derive less conservative results, we add the following inequalities with positive diagonal matrices \(M_1, M_2 \)
\[e^{2kt} [-2f^T(x(t)) M_1 f(x(t)) + 2x^T(t) M_1 (\Gamma_1 + \Gamma_2) f(x(t)) \]
\[- 2x^T(t) \Gamma_1 M_1 \Gamma_2 x(t)] \geq 0 \]

\[e^{2kt} [-2f^T(x(t - \tau(t))) M_2 f(x(t - \tau(t))) + 2x^T(t - \tau(t)) M_2 \]
\[\times (\Gamma_1 + \Gamma_2) f(x(t - \tau(t)) - 2x^T(t - \tau(t)) \Gamma_1 M_2 \Gamma_2 \]
\[x(t - \tau(t))] \geq 0 \]

\[(34) \]

According to Lemma 3
\[\dot{V}_6(x) \leq \frac{\tau_1}{3} [\lambda_{\text{max}}(S_{11}) + \lambda_{\text{max}}(S_{12}) + \lambda_{\text{max}}(S_{13})] ||x(s)||^2 \]
\[+ \frac{\tau_1}{3} [\lambda_{\text{max}}(S_{12}) + \lambda_{\text{max}}(S_{13}) + \lambda_{\text{max}}(S_{22})] \]
\[\times ||x(s - \frac{\tau_1}{3})||^2 + \frac{\tau_1}{3} [\lambda_{\text{max}}(S_{22}) + \lambda_{\text{max}}(S_{23})] \]

\[(35) \]

\[(36) \]
\[
\begin{align*}
+ \lambda_{\max}(S_{33})\|x(s)\|^2 \\
\leq \frac{\tau_1}{3} \lambda_{\max}(S_{11}) + 2\lambda_{\max}(S_{12}) + 2\lambda_{\max}(S_{13}) \\
+ \lambda_{\max}(S_{22}) + 2\lambda_{\max}(S_{23}) + \lambda_{\max}(S_{33}) \\
\times \sup_{-\tau_2 \leq s \leq 0} \|x(s)\|^2
\end{align*}
\]

On the other hand, we have
\[
V(x(t)) \geq e^{2kt} \lambda_{\min}(P)\|x(t)\|^2
\]

Therefore
\[
\|x(t)\| \leq \sqrt{\frac{\omega}{\lambda_{\min}(P)}} e^{-kt} \sup_{-\tau_2 \leq s \leq 0} \|x(s)\|
\]

Thus, according to definition 1, the system (16) is exponentially stable, the proof is completed.

Theorem 2. For given scalars \(\Gamma_1 = \text{diag}(\gamma_1, \gamma_2, \ldots, \gamma_n)\), \(\Gamma_2 = \text{diag}(\gamma_1, \gamma_2, \ldots, \gamma_n)\), \(d \geq 0, u \leq 1, \tau_{12} = \tau_2 - \tau_1\), the system (9) is globally exponentially stable with the exponential convergence rate index \(k\) if there exist symmetric positive definite matrices \(P, Q_i, R_i, i = 1, 2, 3, 4\),

\[
S = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ * & S_{22} & S_{23} \\ * & * & S_{33} \end{bmatrix}
\]

positive diagonal matrices \(M_1, M_2, \Lambda_1 = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)\), \(\Lambda_2 = \text{diag}(\delta_1, \delta_2, \ldots, \delta_n)\), a scalar \(\epsilon > 0\), such that the following LMI holds:

\[
E + \epsilon \Upsilon_1 \Upsilon_1^T + \epsilon^{-1} \Upsilon_2^T \Upsilon_2 < 0.
\]

\[
F + \epsilon \Upsilon_1 \Upsilon_1^T + \epsilon^{-1} \Upsilon_2^T \Upsilon_2 < 0.
\]

\[
G + \epsilon \Upsilon_1 \Upsilon_1^T + \epsilon^{-1} \Upsilon_2^T \Upsilon_2 < 0.
\]

where

\[
\Upsilon_1 = \begin{bmatrix} \Upsilon_1, (\Lambda_1 - \Lambda_2)W + \Xi, 0, 0, 0, 0, 0, 0, 0 \end{bmatrix}^T
\]

\[
\Upsilon_2 = [-E_c, E_a, E_b, 0, 0, 0, 0, 0, 0]
\]

\[
\Xi = \frac{1}{2}(R_1 + R_2 + R_3)W \times \frac{\tau_2}{3}
\]

Proof: In Theorem 1, we replace \(C, A, B, D\) with \(C + \Delta C(t), A + \Delta A(t), B + \Delta B(t), D + \Delta D(t)\), then adding to Lemma 4, we can get the results. This completes the proof.

Corollary 1. For given scalars \(\Gamma_1 = \text{diag}(\gamma_1, \gamma_2, \ldots, \gamma_n)\), \(\Gamma_2 = \text{diag}(\gamma_1, \gamma_2, \ldots, \gamma_n)\), \(d \geq 0, u \leq 1, \tau_{12} = \tau_2 - \tau_1\), the system (16) is globally exponential stable with the exponential convergence rate index \(k\) if there exist symmetric positive definite matrices \(P, Q_i, R_i, i = 1, 2, 3, 4\),

\[
S = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ * & S_{22} & S_{23} \\ * & * & S_{33} \end{bmatrix}
\]

positive diagonal matrices \(M_1, M_2, \Lambda_1 = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)\), \(\Lambda_2 = \text{diag}(\delta_1, \delta_2, \ldots, \delta_n)\) such that the following LMI holds:

\[
E = \begin{bmatrix} e_{11} & e_{12} & e_{13} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{19} \\ * & e_{22} & e_{23} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{29} \\ * & * & e_{33} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{39} \\ * & * & * & e_{44} & e_{45} & e_{46} & 0 & 0 & 0 & 0 & e_{49} \\ * & * & * & * & e_{55} & e_{56} & e_{57} & 0 & 0 & 0 & e_{59} \\ * & * & * & * & * & e_{66} & e_{67} & e_{68} & 0 & 0 & e_{69} \\ * & * & * & * & * & * & e_{77} & e_{78} & e_{79} & 0 & e_{79} \\ * & * & * & * & * & * & * & e_{88} & e_{89} & e_{89} & e_{89} \end{bmatrix} \leq 0
\]
Theorem 1. This paper not only divides the delay interval $[\tau_1, \tau_2]$ into $[\tau_1, \frac{\tau_1 + \tau_2}{2}]$ and $[\frac{\tau_1 + \tau_2}{2}, \tau_2]$ but also divides $[\tau_1, \tau_2]$ into $[\tau_1, \frac{\tau_1 + \tau_2}{3}]$, $[\frac{\tau_1 + \tau_2}{3}, \frac{2\tau_1 + \tau_2}{3}]$, $[\frac{2\tau_1 + \tau_2}{3}, \tau_2]$. Each segment has a different Lyapunov matrix, which have potential to yield less conservative results.

Remark 2. Unlike other papers [17-18], which $0 \leq \tau(t) \leq \tau$, in this paper we let $\tau(0) \leq \tau(t) \leq \tau_2$, consider $\tau(0) \neq 0$. Thus our results can obtain better for exponential stability criteria.

IV. NUMERICAL EXAMPLES

In this section, we provide the simulation of examples to illustrate the effectiveness of our method.

Example 1. Consider the system (16) with the following parameters:

$$C = \begin{bmatrix} 2.3 & 0 & 0 \\ 0 & 3.4 & 0 \\ 0 & 0 & 2.5 \end{bmatrix}, \quad A = \begin{bmatrix} 0.9 & -1.5 & 0.1 \\ -1.2 & 0.1 & 0.2 \\ 0.2 & 0.3 & 0.8 \end{bmatrix},$$

$$B = \begin{bmatrix} 0.8 & 0.6 & 0.2 \\ 0.5 & 0.7 & 0.1 \\ 0.2 & 0.1 & 0.5 \end{bmatrix}, \quad D = \begin{bmatrix} 0.3 & 0.2 & 0.1 \\ 0.1 & 0.2 & 0.1 \\ 0.1 & 0.1 & 0.2 \end{bmatrix},$$

$$\Gamma_1 = \text{diag}(0, 0, 0), \quad \Gamma_2 = \text{diag}(0.2, 0.2, 0.2).$$

For the case of $\tau_2 = d, k = 0, \tau_1 = 0$, the upper bounds of τ for unknown u is derived by Corollary 1 in our paper and the results are listed in Table I. This example shows that the stability condition in this paper gives much less conservative results.

For the case of $d = 0.2, k = 2, \tau_1 = 0.5$, and various u, the maximum τ_2 is shown in Table II.
Table I
ALLO WABLE UPPER BOUND OF τ FOR EXAMPLE 1

<table>
<thead>
<tr>
<th>Method</th>
<th>Maximum of allowable τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>[13]</td>
<td>1.833</td>
</tr>
<tr>
<td>[14]</td>
<td>3.597</td>
</tr>
<tr>
<td>[15]</td>
<td>5.068</td>
</tr>
<tr>
<td>[16]</td>
<td>6.938</td>
</tr>
<tr>
<td>[17]</td>
<td>9.338</td>
</tr>
<tr>
<td>[18]</td>
<td>11.588</td>
</tr>
<tr>
<td>corollary 1</td>
<td>13.459</td>
</tr>
</tbody>
</table>

Table II
ALLO WABLE UPPER BOUND OF τ₂ FOR EXAMPLE 1

<table>
<thead>
<tr>
<th>conditions</th>
<th>Theorem 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ₁ = 0.5, d = 0.2, k = 2, u = 0.5</td>
<td>6.3</td>
</tr>
<tr>
<td>τ₁ = 0.5, d = 0.2, k = 2, u = 0.8</td>
<td>6.0</td>
</tr>
<tr>
<td>τ₁ = 0.5, d = 0.2, k = 2, u = 0.9</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Table III
ALLO WABLE UPPER BOUND OF k FOR EXAMPLE 2

<table>
<thead>
<tr>
<th>conditions</th>
<th>Theorem 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ₂ = 0.5, d = 0.2, u = 0</td>
<td>0.46 0.38 0.67 3.60</td>
</tr>
<tr>
<td>τ₂ = 0.5, d = 0.2, u = 0.5</td>
<td>0.21 0.35 0.45 3.59</td>
</tr>
</tbody>
</table>

Table IV
ALLO WABLE UPPER BOUND OF τ₂ FOR EXAMPLE 3

<table>
<thead>
<tr>
<th>Theorem</th>
<th>15.200</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ₂</td>
<td>15.111</td>
</tr>
<tr>
<td></td>
<td>15.000</td>
</tr>
<tr>
<td></td>
<td>14.670</td>
</tr>
<tr>
<td></td>
<td>14.668</td>
</tr>
</tbody>
</table>

Parameters:

\[
C = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{bmatrix},
A = \begin{bmatrix} 1.2 & -0.8 & 0.6 \\ 0.5 & -1.5 & 0.7 \\ -0.8 & -1.2 & -1.4 \end{bmatrix},
B = \begin{bmatrix} -1.4 & 0.9 & 0.5 \\ -0.6 & 1.2 & 0.8 \\ 0.5 & -0.7 & 1.1 \end{bmatrix},
D = \begin{bmatrix} 1.8 & 0.7 & -0.8 \\ 0.6 & 1.4 & 1.0 \\ -0.4 & -0.6 & 0.2 \end{bmatrix},
\Gamma_1 = \text{diag}(-1.2,0,-2.4),
\Gamma_2 = \text{diag}(0,1.4,0)
\]

For various τ₁, d and u, the maximum of the exponential convergence rate index k calculated by Theorem 1 in this paper are listed in Table III.

Example 3
Consider the system (16) with the following parameters:

\[
C = \begin{bmatrix} 3.99 & 0 \\ 0 & 2.99 \end{bmatrix},
A = \begin{bmatrix} 1.188 & 0.09 \\ 0.09 & 1.188 \end{bmatrix},
B = \begin{bmatrix} 0.009 & 0.14 \\ 0.05 & 0.09 \end{bmatrix},
D = \begin{bmatrix} 0.45 & -0.2 \\ 0.3 & 0.42 \end{bmatrix},
\Gamma_1 = \text{diag}(0,0),
\Gamma_2 = \text{diag}(1,1)
\]

The corresponding upper of τ₂ for various τ₁ by Theorem 1 (letting k = 1, u = 0.8, d = 0.3) in Table IV.

References

Miaomiao Yang was born in Anhui Province, China, in 1989. She received the B.S. degree from Huaibei Normal University in 2012. She currently pursuing the M.S. degree from University of Electronic Science and Technology of China. Her research interests include stability of neural networks, switch and delay dynamic systems.

Shouming Zhong was born in 1955 in Sichuan, China. He received B.S. degree in applied mathematics from UESTC, Chengdu, China, in 1982. From 1984 to 1986, he studied at the Department of Mathematics in Sun YatSen University, Guangzhou, China. From 2005 to 2006, he was a visiting research associate with the Department of Mathematics in University of Waterloo, Waterloo,Canada. He is currently as a full professor with School of Applied Mathematics, UESTC. His current research interests include differential equations, neural networks, biomathematics and robust control. He has authored more than 80 papers in reputed journals such as the International Journal of Systems Science, Applied Mathematics and Computation, Chaos, Solitons and Fractals, Dynamics of Continuous, Discrete and Impulsive Systems, Acta Automat. Sinica, Journal of Control Theory and Applications, Acta Electronica Sinica, Control and Decision, and Journal of Engineering Mathematics.