A Fuzzy Decision Making Approach for Supplier Selection in Healthcare Industry

Zeynep Sener, Mehtap Dursun

Abstract—Supplier evaluation and selection is one of the most important components of an effective supply chain management system. Due to the expanding competition in healthcare, selecting the right medical device suppliers offers great potential for increasing quality while decreasing costs. This paper proposes a fuzzy decision making approach for medical supplier selection. A real-world medical device supplier selection problem is presented to illustrate the application of the proposed decision methodology.

Keywords—Fuzzy decision making, fuzzy multiple objective programming, medical supply chain, supplier selection.

I. INTRODUCTION

In recent years, with the rapid growth of medical device use, the number of reported problems related to lack of quality has increased dramatically. The healthcare industry has been troubled by serious adverse event cases and product recalls [1].

Selecting the best medical device supplier among multiple alternatives has become crucial in order to achieve customer satisfaction. Due to the expanding competition in healthcare, effective medical device supplier decision offers great potential for increasing quality while decreasing costs.

Since the pioneer work of Dickson [2], several studies have been focused on identifying the criteria used to select suppliers [3]-[5]. With its need to trade-off multiple criteria, supplier selection is a highly important multi-criteria decision making (MCDM) problem. There are various methods which have been developed for supplier selection in the literature. The interested reader may refer to the recent study reviewing the literature regarding supplier evaluation and selection models presented by Ho et al. [6].

This paper proposes a decision making approach based on fuzzy multiple objective programming for medical supplier selection. Linguistic variables and triangular fuzzy numbers are employed to quantify the imprecision inherent in supplier selection criteria. The importance level of each decision criterion considered as an objective to be maximized or minimized is obtained using decision making trial and evaluation laboratory (DEMATEL) method.

The rest of the paper is organized as follows. Section II outlines the DEMATEL method. In Section III, the fuzzy multiple objective decision making procedure is presented. The application of the proposed decision approach to a real-world medical supplier selection problem is presented in Section IV. Conclusion and directions for further research are given in the final section.

II. DEMATEL METHOD

The decision making trial and evaluation laboratory (DEMATEL) method [7] is developed by the Science and Human Affairs Program of the Battelle Memorial Institute of Geneva between 1972 and 1976 [8]. The DEMATEL method enables the decision maker to visualize influences between criteria and it computes their importance weights. The steps of the method can be summarized as follows [8]-[10]:

Compute the average matrix A. Respondents are asked to indicate the direct influence that they believe each factor i exerts on each factor j of the others, as indicated by a_{ij}, using an integer scale [8].

Calculate the normalized initial direct influence matrix D. The normalized initial direct influence matrix can be obtained by normalizing the average matrix A which is also called the initial direct influence matrix in the following way [8]-[10]: $D = s A$, where

$$s = \min \left[\frac{1}{\max_{i,j} \sum_{j} |a_{ij}|}, \frac{1}{\max_{i,j} \sum_{i} |a_{ij}|} \right]$$

(1)

Calculate the total relation matrix. The total relation matrix T is defined as $T = D(I - D)^{-1}$, where I is the identity matrix.

Define r and c be $n \times 1$ and $1 \times n$ vectors representing the sum of rows and sum of columns of the total relation matrix T, respectively. Suppose r_i be the sum of ith row in matrix T, then r_i shows both direct and indirect effects given by factor i to the other factors. If c_j denotes the sum of jth column in matrix T, then c_j shows both direct and indirect effects by factor j from the other factors [10].

When $j = i$, the sum $(r_i + c_i)$ shows the degree of importance for factor i in the entire system. In addition, the difference $(r_i - c_i)$ represents the net effect that factor i contributes to the system. Specifically, if $(r_i - c_i)$ is positive, factor i is a net causer, and when $(r_i - c_i)$ is negative, factor i is a net receiver [10].

Set up a threshold value to obtain the network relationship map which explains the structural relations among criteria [10].
III. FUZZY MULTIPLE OBJECTIVE DECISION MAKING

PROCEDURE

Let X be the set of alternatives and C be the set of objectives that has to be satisfied by X. The objectives to be maximized and the ones to be minimized are denoted by Z_k and W_p, respectively. Considering these definitions, the model formulation is as [11]

$$
\text{Max } \tilde{Z}(x) = (\tilde{c}_1 x, \tilde{c}_2 x, ..., \tilde{c}_l x) \quad (2)
$$

$$
\text{Min } \tilde{W}(x) = (\tilde{c}_1 x, \tilde{c}_2 x, ..., \tilde{r}_x x)
$$

subject to

$$
x \in X = \left\{ x \geq 0 : [\hat{A}x + b] \right\},
$$

where l is the number of objectives to be maximized, r is the number of objectives to be minimized, \tilde{c}_k ($k = 1, \ldots, l$) and \tilde{c}_p ($p = 1, \ldots, r$) are n-dimensional vectors, b is an m-dimensional vector, \hat{A} is an $m \times n$ matrix, $\tilde{c}_k, \tilde{c}_p, \hat{A}$ and b’s elements are fuzzy numbers, and “\ast” indicates “\leq”, “\geq” and “$=$” operators. The formulation given above is a multiple objective linear programming model. Here, the coefficients of the constraints and the objective functions are triangular fuzzy numbers, which are useful means in quantifying the uncertainty in decision making due to their intuitive appeal and computational-efficient representation [12]. The membership function of triangular fuzzy number coefficients represented by $\hat{Q} = (q_1, q_2, q_3)$ is given as

$$
\mu_{\hat{Q}}(x) = \begin{cases}
0, & x < q_1 \\
\frac{x - q_1}{(q_2 - q_1)}, & q_1 \leq x \leq q_2 \\
\frac{q_3 - x}{(q_3 - q_2)}, & q_2 \leq x \leq q_3 \\
0, & x > q_3
\end{cases}
$$

subject to

$$
\int_{0}^{\beta} (x - \hat{h}_1) (x - \hat{h}_2) dx, \hat{h}_1 \leq x \leq \hat{h}_2
$$

where β is the composition operator, β is the grade of compromise to which the solution satisfies all of the fuzzy objectives while the coefficients are at a feasible level α, and X_α denotes the set of system constraints.

The “\min” operator is non-compensatory, and thus, the results obtained by the “\min” operator indicate the worst situation and cannot be compensated by other members that may be very good. A dominated solution can be obtained due to the non-compensatory nature of the “\min” operator. This problem can be overcome by applying a two-phase approach employing the arithmetic mean operator in the second phase to assure an undominated solution [14].

Lee and Li [14] proposed a two-phase approach, where in the first phase they solve the problem parametrically for a given value of α, and in the second phase, they obtain an undominated solution using the value of α determined in the first phase. In this study, a modified version of the algorithm proposed by Lee and Li [14] is employed as given below.

A. First Phase

Define $\lambda = \text{step length}$, $\tau = \text{accuracy of tolerance}$, $k = \text{multiple of step length}$, $e = \text{iteration counter}$. Set $k = 0$, $e = 0$. Set $\alpha_c := 1 - k \lambda$.

Solve the problem for α_c to obtain β_c and x_c. If $\alpha_c - \beta_c > \tau$ then $e := e + 1$, $k := k + 1$, set $\alpha_c := 1 - k \lambda$. If $\alpha_c - \beta_c < -\tau$ then $\lambda := \lambda / 2$, $k := 2k - 1$, set $\alpha_c := 1 - k \lambda$. If $|\alpha_c - \beta_c| \leq \tau$ then output α_c, β_c, and x_c.

B. Second Phase

After computing the values of α and β according to the procedure given in the first phase, we can solve the following problem in order to obtain an undominated solution for the situation where the solution is not unique.

$$
\text{Max } \frac{1}{l + r} \left(\sum_{k=1}^{l} \beta_k + \sum_{p=1}^{r} \beta_p^p \right) \quad (6)
$$

subject to

$$
\beta \leq \mu_{1} \circ \mu_{k}^Z(Z_k) \\
\beta \leq \mu_{1} \circ \mu_{p}^W(W_p) \\
\beta \in [0, 1] \\
x \in X_\alpha \\
x_j \geq 0, \; j = 1, \ldots, n
$$

where “\circ” is the composition operator, β is the grade of compromise to which the solution satisfies all of the fuzzy objectives while the coefficients are at a feasible level α, and X_α denotes the set of system constraints.
The fuzzy multiple objective decision making framework presented in this paper determines the most appropriate supplier by maximizing supply variety, reliability, experience in the sector, earlier business relationship, and management; while minimizing delivery time. The importance degree of the objectives which are denoted by linguistic variables such as ‘moderate’, ‘high’, and ‘very high’ are given in Table II.

Using the evaluation data of each supplier alternative given in Table III, (5) is employed. The step length (λ) and the accuracy of tolerance (τ) are set to be 0.05 and 0.005, respectively, as in [15].

The ratings of 12 supplier alternatives with respect to supplier selection criteria are considered as linguistic variables ‘definitely low (DL)’, ‘very low (VL)’, ‘low (L)’, ‘medium (M)’, ‘high (H)’, ‘very high (VH)’, and ‘definitely high (DH)’ which possess membership functions depicted in Fig. 1.

![Membership functions for linguistic variables regarding technical difficulty of engineering characteristics](image)

Fig. 1 Membership functions for linguistic variables regarding technical difficulty of engineering characteristics (DL: (0, 0, 0.16), VL: (0, 0.16, 0.33), L: (0.16, 0.33, 0.50), M: (0.33, 0.50, 0.66), H: (0.50, 0.66, 0.83), VH: (0.66, 0.83, 1), DH: (0.83, 1, 1)).

The algorithm presented in section 3 yields the results given in Table IV. In order to ensure an undominated solution, (6) is solved using the α value determined at the end of the first phase and the arithmetic mean operator. According to the results given in Table V, supplier 2 is the selected medical supplier alternative, and the grade of compromise obtained by the arithmetic mean operator is 0.983646.

Table I

<table>
<thead>
<tr>
<th>Supplier selection criterion</th>
<th>Importance weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product volume</td>
<td>0.081407</td>
</tr>
<tr>
<td>Delivery time</td>
<td>0.110049</td>
</tr>
<tr>
<td>Payment method</td>
<td>0.092310</td>
</tr>
<tr>
<td>Supply variety</td>
<td>0.100551</td>
</tr>
<tr>
<td>Reliability</td>
<td>0.120702</td>
</tr>
<tr>
<td>Experience in the sector</td>
<td>0.142790</td>
</tr>
<tr>
<td>Earlier business relationship</td>
<td>0.124756</td>
</tr>
<tr>
<td>Management</td>
<td>0.151093</td>
</tr>
<tr>
<td>Geographical location</td>
<td>0.076342</td>
</tr>
</tbody>
</table>

Reducing the number of criteria taken into account in the decision process enables the team to focus more on the key criteria which improves supply chain performance. Based on a threshold value of 0.100000, the team identified 6 decision criteria (delivery time, supply variety, reliability, experience in the sector, earlier business relationship, and management) which are considered as objectives employed to evaluate supplier alternatives.
In medical supply chain, one of the most critical decisions is to select the most appropriate medical device supplier among multiple alternatives. In this study, a fuzzy multiple objective programming based decision framework is presented for medical supplier selection. Fuzzy multiple objective programming model enables to incorporate conflicting supply chain management objectives with imprecise data into the supplier decision model.

Considering opinions of multiple decision-makers rather than a single decision-maker is more appropriate in making decisions in supplier selection process which may involve information provided by many people. Thus, future research will focus on applying the decision framework presented in here to real-world group decision making problems.

REFERENCES

Zeynep Sener is an assistant professor of Industrial Engineering at Galatasaray University, Turkey. She holds BS, MS, and PhD degrees in Industrial Engineering from Galatasaray University. Her areas of interest include quality function deployment, fuzzy regression, and fuzzy optimization. She has coauthored articles that appeared in International Journal of Production Research, Expert Systems with Applications, International Journal of Advanced Manufacturing Technology, Software Quality Journal, and Concurrent Engineering-Research and Applications.

Mehtap Dursun is a research assistant of Industrial Engineering at Galatasaray University, Turkey. She holds BS, MS, and PhD degrees in Industrial Engineering from Galatasaray University. Her areas of interest include quality function deployment, fuzzy optimization, and multi-criteria decision making with special focus on waste management, personnel selection, and supplier selection. She has coauthored articles that appeared in Expert Systems with Applications, Resources Conservation and Recycling, International Journal of Production Research, and Applied Mathematical Modelling.