Potential Field Functions for Motion Planning and Posture of the Standard 3-Trailer System

K. Raghuwaiya, S. Singh, B. Sharma, J. Vanualailai

Abstract—This paper presents a set of artificial potential field functions that improves upon, in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of 3-trailer systems in a priori known environment. We basically design and inject two new concepts; ghost walls and the distance optimization technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. The effectiveness of the proposed control laws were demonstrated via simulations of two traffic scenarios.

Keywords—Artificial potential fields, 3-trailer systems, motion planning, posture, parking and collision-free trajectories.

I. INTRODUCTION

The nonholonomic motion planning problem involves finding a feasible path from some initial configuration to some desired final configuration for a system with nonholonomic velocity constraints. These nonintegrable constraints arise from the condition of non-slippage on the wheels in rolling contact with another rigid body. Some examples of these types of nonholonomic systems include mobile robots, tractor-trailer vehicles and mobile manipulators. A wide range of problems in various robotic applications have been solved by utilizing the artificial potential field method. Its major advantages include easier analytic representation of system singularities and inequalities, its simplicity and processing speed. The underlying principle of this method is to attach attractive fields to the target and repulsive fields to the obstacles. The robot's workspace is then filled with positive and negative fields, in which the robot is attracted to its designated target and repulsed away from the obstacles. The authors deal with the standard 3-trailer system. The multi-trailer systems are treated as ghost obstacles. To avoid these obstacles, we utilize Khatib's collision avoidance scheme to propose potential fields to safely traverse in the workspace towards the target position and attain the desired final posture.

This paper makes use of Lyapunov techniques as a tool for the motion planning of tractor-trailer robots. Specifically, the authors deal with the standard 3-trailer system. The multi-body robot navigates its way towards the target in a constrained workspace populated with fixed obstacles. Here, the walls of the bounded workspace and the static obstacles are treated as ghost obstacles. To avoid these obstacles, we utilize Khatib's collision avoidance scheme to propose potential fields to safely traverse in the workspace towards the target position and attain the desired final posture.

The paper is organized as follows. In Section II, the vehicle model is defined. In Sections III, IV and V, motion planning is carried out. The construction of stabilizing control laws is presented in Section VI, while Section VII contains some simulation results. The paper ends with some concluding remarks in Section VIII.

II. VEHICLE MODEL

Two different trailer systems can be distinguished from literature; standard and the general trailer systems, grouped into two different categories based upon their different hooking schemes. Basically, these systems consist of a tractor towing an arbitrary number of trailers, which mostly are passive in order to reduce the costs of implementation. The authors will consider a rear wheel driven car-like vehicle, and an on-axle (standard system) hitched two-wheeled passive trailer, in Euclidian plane. The tractor robot utilized herein

K. Raghuwaiya and S. Singh is with the School of Computing, Information and Mathematical Sciences at the University of the South Pacific, Fiji Islands (phone: +679 3232253; fax: +679 3231527; e-mail: raghuwaiya_k, singh sb@ @usp.ac.fj).

B. Sharma is with the Faculty of Science, Technology and Engineering at the University of the South Pacific, Fiji Islands (phone: +679 3232069; fax: +679 3231527; e-mail: sharma_b@ @usp.ac.fj).

J. Vanualailai is with the Research Office at the University of the South Pacific, Fiji Islands (phone: +679 3232277; fax: +679 3231527; e-mail: vanualailai@usp.ac.fj).
basically performs motions similar to that of a car-like robot, with front-wheel steering and decrees the path of the attached trailer.

Many papers on nonholonomic systems have dealt exclusively with the kinematic models with the inherent advantage of decoupling the steering and velocity controls of a vehicle. However, to better mimic reality we accommodate for the dynamics of the vehicular system as well. This produces a trajectory in the state-space rather than merely a path in configuration space [7], while retaining the advantage of decoupling, but in this case, of the translational and rotational accelerations.

In this research, the standard 3-trailer system embodies a car-like tractor robot and three on-axle hitched two-wheeled passive trailers. A revolute link or a rigid bar of length L_i joins the two vehicles; from the midpoint point of the rear axle of the ith vehicle to the midpoint of the rear axle of the ith vehicle (see Fig. 1).

For $i = 0, ..., 3$. We define $d_i = e_i + a_i$ where a_i is a small offset for the ith vehicle (see Fig. 2). These constraints will reduce the dimension of the configuration space, since the position (x_i, y_i) can be expressed completely in terms of (x_0, y_0, θ_i).

Fig. 2 Schematic diagram of a standard 3-trailer system and the ghost walls

If we let m be the mass of the full robot, F the force along the axis of the tractor robot, Γ the torque about a vertical axis at (x_0, y_0) and I the moment of inertia of the tractor robot, then the dynamic model of a standard 3-trailersystem extended from [3] is given by

\[
\begin{align*}
\dot{x}_0 &= v \cos \theta_0 - \frac{1}{2} v \sin \theta_0, \\
\dot{y}_0 &= v \sin \theta_0 + \frac{1}{2} v \cos \theta_0, \\
\dot{\theta}_0 &= \omega, \\
\dot{\theta}_i &= \frac{v}{L_i} \sin(\theta_i - \theta) \prod_{k=i}^{3} \sin(\theta_{i+k} - \theta), \\
\dot{\omega} &= \tau = \frac{F}{m},
\end{align*}
\]

A. Minimizing C-Space

To ensure that the entire vehicle safely steers pass an obstacle, the planar vehicle can be represented as a simpler fixed-shaped object, such as a circle, a polygon or a convex Hull [8]. This representation is facilitated with the inherent view of minimizing the obstacle space in the workspace. Obstacle space is commonly known as C-space in the literature. In [3], the authors represented a standard 1-trailersystem by the smallest circle possible, given some clearance parameters. The obvious problem of their representation was the creation of unwarranted obstacle space, which further curtailed the set of reachable points in the configuration space. In this research, given the clearance parameters e_1 and e_2 the authors enclose the articulated vehicle within separate protective circular regions (as seen in Fig. 2), i.e. a protective region for each solid body, which basically reduces the unnecessary growth of the C-space in [7] and subsequently presents a greater set of options. Hence, circular region C_i is centered at (x_i, y_i) for $i = 0, ..., 3$, with radius $r_{i} = \frac{1}{2} \left[(L_0 + 2e_1) + (l + 2e_2) \right]^2 = \frac{e_1^2 + 4e_2^2}{4}$ and

\[
\begin{align*}
x_i &= x_0 - \frac{L_0}{2} \cos \theta_0 - \sum_{j=1}^{3} \left(\frac{L_j + 2d_j}{2} \right) \cos \theta_j, \\
y_i &= y_0 - \frac{L_0}{2} \sin \theta_0 - \sum_{j=1}^{3} \left(\frac{L_j + 2d_j}{2} \right) \sin \theta_j.
\end{align*}
\]
\[r_{ii} = \frac{1}{2} \left[\left(L_i - 2r \right)^2 + \left(l + 2 \epsilon_i \right)^2 \right] = \frac{L_i^2}{2} + \frac{L_i^2}{2} \]

If we let \(L_i = L_0 + 2d_i \) for \(i = 1, \ldots, 3 \) then \(r_{i0} = r_{ii} \). Also with the choice of the reference points and the radius of the circular regions of the vehicles, we have \(d_i = \frac{d}{2} \) for \(i = 1, \ldots, 3 \).

III. ATTRACTION POTENTIAL FIELD FUNCTIONS

This section formulates collision free trajectories of the robot system under kinodynamic constraints in a fixed and bounded workspace. It is assumed that the car-like robots have \textit{a priori} knowledge of the whole workspace. We want to design the acceleration controllers, \(\sigma_1 \) and \(\sigma_2 \), so that the mobile robot moves safely towards its target.

A. Attraction to Target

A target is assigned for the robot to reach after some time \(t \). For the \(i \)-th body of the tractor trailer system, we define a target

\[T = \left\{ (z_i, z_1) \in \mathbb{R}^2 : (z_i - p_{i0})^2 + (z_1 - p_{i1})^2 \leq r_{iti} \right\} \]

with center \((p_{i0}, p_{i1}) \) and radius \(r_{iti} \). For the attraction to its designated target, we consider an attractive potential function

\[V(x) = \frac{1}{2} \left\{ \sum_{i=1}^{3} (x_i - p_{i0})^2 + (y_i - p_{i1})^2 \right\} + v^2 + a^2 \]

(2)

B. Auxiliary Function

To guarantee the convergence of the mobile robot to its designated target, we design an auxiliary function defined as:

\[G(x) = \frac{1}{2} \sum_{i=0}^{3} \left[(x_i - p_{i0})^2 + (y_i - p_{i1})^2 + \rho_3 (\theta_i - p_{i3})^2 \right] \]

(3)

where \(p_{i3} \) is the desired final orientation of the \(i \)-th body of the articulated robot. These potential functions are then multiplied to the repulsive potential functions to be designed in the following sections.

IV. REPULSIVE POTENTIAL FIELD FUNCTIONS

We desire the \(i \)-th body of the mobile robot to avoid all stationary obstacles intersecting their paths. For this, we construct the obstacle avoidance functions that merely measure the distances between each body and the obstacles in the workspace. To obtain the desired avoidance, these potential functions appear in the denominator of the repulsive potential field functions. This creates a repulsive field around the obstacles.

A. Fixed Obstacles in the Workspace

Let us fix \(w \) solid obstacles within the workspace and assume that the \(q \)-th obstacle is circular with center \((q_0, q_1) \) and radius \(r_{q0} \). For the \(i \)-th body with a circular avoidance region of radius \(r_{ii} \) to avoid the \(q \)-th obstacle, we adopt

\[FO_{iq}(x) = \frac{1}{2} \left[(x_i - q_0)^2 + (y_i - q_1)^2 - (r_{ii} + r_{qi})^2 \right] \]

(4)

for \(q = 0, \ldots, w \).

B. Workspace Limitations

We desire to setup a framework for the workspace of our robot. Our workspace is a fixed, closed and bounded rectangular region, defined, for some \(\eta_1 > 2r \) for \(k = 1, 2 \) with

\[r = \sum_{i=0}^{3} r_{ii} \text{ as } WS = \left\{ (z_i, z_1) \in \mathbb{R}^2 : 0 \leq z_i, 0 \leq z_1 \leq \eta_1 \right\}. \]

We require the robot to stay within the rectangular region at all time \(t \geq 0 \). Therefore, we impose the following boundary conditions:

- Left Boundary: \((z_i, z_1) : z_i = 0 \),
- Upper Boundary: \((z_i, z_1) : z_1 = \eta_1 \),
- Right Boundary: \((z_i, z_1) : z_i = \eta_1 \),
- Lower Boundary: \((z_i, z_1) : z_1 = 0 \).

In our Lyapunov-based control scheme, these boundaries are considered as \textit{fixed obstacles}. For the \(i \)-th body of each robot to avoid these, we define the following potential functions for the left, upper, right and lower boundaries, respectively:

\[W_{i0} = x_i - r_{ii}, \]

(5)

\[W_{i1} = x_i - (r_{ii} + r_{qi}), \]

(6)

\[W_{i2} = x_i - (r_{ii} + r_{qi}), \]

(7)

\[W_{i3} = y_i - r_{ii}, \]

(8)

for \(i = 0, \ldots, 3 \). Now, since \(\eta_1 > 2 \left(\sum_{i=0}^{3} r_{ii} \right) \) for \(k = 1, 2 \) each of the functions is positive in \(WS \). Embedding these functions into the control laws will contain the motions of the tractor-trailer robot within the specified boundaries of the workspace and will prevent it from crossing over the boundaries.

C. Orientations

One difficulty that exists with continuous time-invariant controllers is that although the final position is reachable, it is virtually impossible to get exact orientations at the equilibrium point of this special class of dynamical systems, a direct result of Brockett’s Theorem [9]. In this paper, we construct ghost walls along the sides of the target parallel to the desired final orientation of the robot, and a third ghost wall erected in-front of the target. This technique reduces the possible entry routes to a single opening as the other entry routes are blocked by the ghost walls. Next, we utilize an idea inspired by the work carried out by Khatri in [1], for the avoidance of these ghost walls in order to force the desired orientations. The technique
we use calculates the minimum distance from the robot to a ghost wall and avoids the result point on that ghost wall. Avoiding the closest point on any line basically affirms that the mobile robot avoids the whole wall. This algorithm helps greatly simplify the navigation laws.

Now let us consider the kth ghost wall in the \((z_i, z_i)\)-plane, from the point \((a_i, b_i)\) to the point \((a_i, b_i)\). We assume that the point \((x_i, y_i)\) is closest to it at the tangent line which passes through the point. From geometry, it is known that if \((Lx_k, Ly_k)\) is the point of intersection of this tangent, then

\[
Lx_k = a_{k1} + \lambda_k (a_{k2} - a_{k1}), \quad Ly_k = b_{k1} + \lambda_k (b_{k2} - b_{k1})
\]

where \(\lambda_k = (x_i - a_{k1}) d_1 + (y_i - b_{k1}) r_i\), and

\[d_1 = \frac{(a_{k2} - a_{k1})}{(a_{k2} - a_{k1})^2 + (b_{k2} - b_{k1})^2}, \quad r_i = \frac{(b_{k2} - b_{k1})}{(a_{k2} - a_{k1})^2 + (b_{k2} - b_{k1})^2}\]

If \(\lambda_k \geq 1\) then we let \(\lambda_k = 1\), if \(\lambda_k \leq 0\), then we let \(\lambda_k = 0\), otherwise we accept the value of \(\lambda_k\) between 0 and 1, in which case there is a perpendicular line to the point \((Lx_k, Ly_k)\) on the ghost wall from the center \((x_i, y_i)\) of ith body of the articulated vehicle at every time \(t \geq 0\). For the ith body of the robot to avoid the closest point of each of the kth line segment, we consider a positive potential field function:

\[
LS_i(x) = \frac{1}{2} \left[(x_i - Lx_k)^2 + (y_i - Ly_k)^2 - r_i^2 \right]
\]

for \(i = 0, ..., 3\) and \(k = 1, ..., m\).

V. DYNAMIC CONSTRAINTS

Practically, the steering and bending angles of mobile robots are limited due to mechanical singularities while the translational speed is restricted due to safety reasons. Subsequently, we have: (i) \(|\dot{\theta}| \leq \varphi_{\text{max}}\), where \(\varphi_{\text{max}}\) is the maximal speed of the tractor; (ii) \(|\dot{\varphi}| \leq \phi_{\text{max}} \leq \xi\), where \(\phi_{\text{max}}\) is the maximal steering angle, and (iii) \(|\theta_{\text{max}}| \leq \theta_{\text{max}} \leq \zeta\) where \(\theta_{\text{max}}\) is the maximum bending angle of the trailer with respect to the orientation of the tractor. The trailer can freely rotate within \((-\zeta, \zeta)\) about their linking point with the tractor.

Considering these constraints as artificial obstacles, we have the following potential field functions:

\[
U_i(x) = \frac{1}{2} \left[(v_{\text{max}} - v)(v_{\text{max}} + v) \right]
\]

\[
U_2(x) = \frac{1}{2} \left[\left(\frac{v_{\text{max}}}{\varphi_{\text{max}}} - \varphi \right) \left(\frac{v_{\text{max}}}{\varphi_{\text{max}}} + \varphi \right) \right]
\]

\[
DC_i(x) = \frac{1}{2} \left[(\theta_{\text{max}} - (\theta - \theta_{\text{max}}))(\theta_{\text{max}} + (\theta - \theta_{\text{max}})) \right]
\]

These potential functions guarantee the adherence to the above restrictions placed upon the translational velocity \(v\), steering angle \(\varphi\), and the rotation \(\theta\), for the \(i\)th trailer.

VI. CONTROL LAWS

Combining all the potential functions (2)-(8), and introducing constants, denoted as the control parameters, \(\alpha_{1i}, \beta_{1i}, \zeta_i, \gamma_i, \kappa_i > 0\ i, j, k, s \in \mathbb{N}\), we define a candidate Lyapunov function

\[
L(x) = V(x) + G(x) \sum_{i=1}^{3} \frac{\alpha_i}{\sum_{j=1}^{s} \beta_j} \left(\sum_{k=1}^{m} \lambda_{ik} \right)
\]

\[
+ \sum_{j=1}^{s} \frac{\zeta_j}{\sum_{i=1}^{3} \lambda_{ij}} + \sum_{k=1}^{m} \frac{\gamma_k}{\sum_{i=1}^{3} \lambda_{ik}}
\]

Clearly, \(L(x)\) is locally positive and continuous on the domain \(D(L) = \{ x \in \mathbb{R}^3 : W_i(x) > 0, LS_i(x) > 0, FO_i(x) > 0, DC_i(x) > 0, U_i(x) > 0 \}\). We define \(x_i = (p_{i1}, p_{i2}, p_{i3}, 0, 0)\) an equilibrium point of system (1). Thus, we have \(L(x) = 0\).

![Fig. 3 The total potential](image)

The total potentials as in Fig. 3 are generated for target attraction and avoidance of two stationary disk-shaped obstacles. For better visualization the target of the leader is located at \((x_1, z_2) = (35, 35)\), and the disks are fixed at \(a_1 = (9, 10), a_2 = (11, 19)\) with radii of \(r_1 = r_2 = 1, 2\), while \(\alpha_1 = 20, \ i = 1, 2.\). Also, the velocity and angular components of the robot have been treated as constants such that \(v = 0.5, \ \omega = 0\), and \(\theta = 0\).

To extract the control laws, we differentiate the various components of \(L(x)\) separately and carry out the necessary substitutions from (1). The nonlinear control laws for system (1) will be designed using Lyapunov's Direct Method. The process begins with the following theorem:

Theorem: The equilibrium point \(x_i\) of system (1) is stable in the sense of Lyapunov provided
\[\sigma_i = -\frac{1}{\varepsilon_i} \left[\delta_v \sum_{j=1}^n \left(f_i(x) \cos \theta_j + g_i(x) \sin \theta_j \right) \right] \]

\[-\frac{1}{\varepsilon_{i(j)}} \sum_{j=1}^n \sum_{k \neq i} \left(\frac{L_{ij} + 2d_j}{2L_j} \right) f_i(x) \sin \theta_j \sin (\theta_{i,j} - \theta_j) \left(\prod_{k \neq i,j} \cos (\theta_{i,k} - \theta_k) \right) \]

\[+ \frac{1}{\varepsilon_{i(j)}} \sum_{j=1}^n \sum_{k \neq i} \left(\frac{L_{ij} + 2d_j}{2L_j} \right) g_i(x) \cos \theta_j \cos (\theta_{i,j} - \theta_j) \left(\prod_{k \neq i,j} \cos (\theta_{i,k} - \theta_k) \right) \]

\[-\frac{1}{\varepsilon_{i(j)}} \left(\sum_{j=1}^n \sum_{k \neq i} \left(h_i(x) - m_i(x) \right) \sin (\theta_{i,j} - \theta_j) \left(\prod_{k \neq i,j} \cos (\theta_{i,k} - \theta_k) \right) \right) \]

\[+ \frac{1}{\varepsilon_{i(j)}} \sum_{j=1}^n \left(\frac{1}{L_j} m_i(x) \sin (\theta_{i,j} - \theta_j) \left(\prod_{k \neq i,j} \cos (\theta_{i,k} - \theta_k) \right) \right), \]

and

\[\sigma_i = -\frac{1}{\varepsilon_{i(j)}} \left[\delta_v \theta_i + \frac{\gamma}{\varepsilon_{i(j)}} \left(g_i(x) \cos \theta_i - f_i(x) \sin \theta_i \right) \right] \]

\[-\frac{1}{\varepsilon_{i(j)}} \left(h_i(x) + m_i(x) \right) \]

for \(i = 1, \ldots, n, \) where \(\delta_v, \delta_i > 0 \) are constants commonly known as convergence parameters.

Proof: The time derivative of our Lyapunov function \(L(x) \) along a particular trajectory of system (1) is then:

\[\dot{L}(x) = -\sum_{ij} \left(\delta_v \dot{x}_i + \delta_i \dot{x}_j \right) \leq 0 \] for all \(x \in D(L), \) and \(\dot{L}(x) = 0 \)

where the functions \(f_i, g_i, h_i, m_i, d_i \) for \(i, j = 1, \ldots, n, \) \(n = 3 \) and \(s = 1, 2 \) are defined as (upon suppressing \(x \)):

\[f_i = [1 + L_i(x)] (x_i - p_i) - G(x) \left[\frac{\beta_i}{W_{i1}(x)} - \frac{\beta_{i2}}{W_{i2}(x)} \right] \]

\[-G(x) \sum_{i,j} \gamma_{ij} (x_i - a_i) \]

\[-G(x) \sum_{i,j} \alpha_{ij} L_{ij} (x) \left(1 - (a_i - a_j) \right) d_i (x_i - L_{ix}) \]

\[+ G(x) \sum_{i,j} \alpha_{ij} L_{ij} (x) \left(h_{ij} - h_{ij} \right) d_j (y_i - L_{ij}) \]

\[h_i = L_i(x) (\theta_i - p_i), \]

\[g_i = [1 + L_i(x)] (y_i - p_i) - G(x) \left[\frac{\beta_i}{W_{i1}(x)} - \frac{\beta_{i2}}{W_{i2}(x)} \right] \]

\[-G(x) \sum_{i,j} \gamma_{ij} (y_i - a_i) \]

\[-G(x) \sum_{i,j} \alpha_{ij} L_{ij} (x) \left(1 - (h_i - h_{ij}) \right) r_i (y_i - L_{ij}) \]

\[+ G(x) \sum_{i,j} \alpha_{ij} L_{ij} (x) \left(a_i - a_j \right) r_i (x_i - L_{ix}) \]

\[m_i = G(x) \left[\frac{\gamma_i}{DC_i(x)} \left(\theta_i - \theta_{ij} \right) \right], \]

\[d_i = 1 + G(x) \left[\frac{\kappa_i}{U_{ij}(x)} \right], \]

where

\[L_i(x) = \sum_{i=1}^{\alpha_i} \frac{\alpha_i}{W_{i1}(x)} + \sum_{i=1}^{\beta_i} \frac{\beta_i}{W_{i2}(x)} + \sum_{i=1}^{\gamma_i} \frac{\gamma_i}{DC_i(x)} \]

\[+ \sum_{i=1}^{\alpha_i} \frac{\alpha_i}{FO_{ij}(x)} + \sum_{i=1}^{\beta_i} U_{ij}(x) \]

A careful scrutiny of the properties of our scalar function reveals that \(x_0 \) is an equilibrium point of system (1) in the sense of Lyapunov and \(L(x) \) is a legitimate Lyapunov function guaranteeing stability. This is in no contradiction with Brockett’s result [9] as we have not proven asymptotic stability.

VII. Simulation

To illustrate the effectiveness of the proposed controllers, we present two scenarios of where the car-like robot and its passive trailers move towards its designated goal while avoiding fixed obstacles in its workspace. The use of the ghost walls helps in attaining the desired posture of the tractor and the trailer robots.
This paper presents a set of artificial field functions derived using Lyapunov’s direct method that improves upon, in general, the posture control with theoretically guaranteed point and posture stabilities, convergence, and collision avoidance of a standard 3-trailer mobile robot. We have a centralized trajectory planning algorithm, which to some extent, demonstrates autonomy and multitasking capabilities of humans. The new algorithm provides us with a suitable and fitting platform to harvest collision-free trajectories from initial to desired states and generate maneuvers that culminate to practically reasonable postures within a constrained environment, whilst satisfying the nonholonomic constraints of the system. The proposed controllers stabilize the configuration coordinates of the vehicle to an arbitrary small neighborhood of the target. We note here that convergence is only guaranteed from a number of initial states of the system. The derived controllers produced feasible trajectories and ensured a nice convergence of the system to its equilibrium state while satisfying the necessary kinematic and dynamic constraints. We note here that convergence is only guaranteed from a number of initial states of the system.

Future research will address the general 3-trailer mobile robots.

REFERENCES

