Development of Material Analyzing Software Using X-Ray Diffraction

Le Chi Cuong

Abstract—X-ray diffraction is an effective mean for analyzing material properties. This paper developed a new computational software for determining the properties of crystalline materials such as elastic constants, residual stresses, surface hardness, phase components, and etc. The results computed from the X-ray diffraction method were compared to those from the traditional methods and they are in the 95% confidential limits, showing that the newly developed software has high reproducibility, opening a possibility of its commercialization.

Keywords—X-ray diffraction, Nondestructive evaluation, Hardness, Residual stress, Phase determination.

I. INTRODUCTION

Among many methods of material analyzing as magnetic, ultrasonic [1], microscopic [2], laser, X-ray diffraction methods [1], [3] etc; X-ray diffraction method has many advantages over the other methods, because it can nondestructively and accurately determine the material properties such as residual stress [4], [5], crystalline grain size [6], phase quantitative [7], hardness [8], thin layer thickness [9] etc. A previous research has developed automated computational software on stress of polycrystalline material [10]. However, many computations on the correction for absorption factor for various materials having different have not been totally integrated into the software.

This research develops a new X-ray material analyzing software for determining material properties, called X-Pro 1.0. The programming language used was C#, which is a strong language, widely supported by the programming experts. It is also capable for users having little programming experience to revise or add the source for a proper computation.

II. MATERIAL ANALYZING SOFTWARE X-PRO 1.0

A. Selection of Development Language

Two common programming methods are currently used, including structured programming (SP) and object-oriented programming (OOP). The SP languages, which are Assembly, Basic, C, and Pascal, have common features such as “Program = Data structure + Algorithm” [11]. Besides the advantage of ease to follow, SP has disadvantages that it does not allow to reuse the resource code, the algorithm strictly depends on the data structure; as the structure changes, the algorithm must change, thus make it difficult to develop, especially for a large project. Instead, OOP uses a group of functions and variables to solve the task of the objects, thus save the resources, reuse the code and is suitable for a large project. Among the OOP languages as Turbo Pascal, C++, and C#, C# is a strong language, developed from the .NET Framework background and supporting many libraries for utilizing rapid programming [12], [13]. The newly developed computational software X-Pro 1.0 was programmed using C# has functions of analyzing material properties as stress computation, phase quantitative determination.

B. Data analysis

The measurement data files are read from the X-ray diffraction system Panalytical XPer or from a text file and then plotted into the diffraction lines as shown in Fig. 2. The peak position p and line broadness B is shown directly on the diffraction line for preliminary evaluation. The absorption factor of many measurement methods used for correcting X-ray intensities are listed in Table I. The diffraction planes (hkl) are also analyzed together with the wave length and the type of Bravais lattice of the measured material. Table I shows the absorption factor for correcting the X-ray intensity in the case of measuring many diffraction methods.
C. Smoothing

To smooth the rough measured X-ray counts, the data is calculated from three data \((x_1,y_1),(x_i,y_i),\) and \((x_2,y_2)\), having an internal of \(nc\), where \(n\) is an integer and \(c\) is the step size. The slope of the line \((1, 2)\) is:

\[
\tan \alpha = \frac{y_2 - y_1}{x_2 - x_1}
\]

For most normal measurement, the angle \(\alpha\) is preset at \(10^\circ\) to get distinction between the diffraction peak and the background diffraction. The value of \(n\) can be preset from 1 to 10 to change the smoothing level. Fig. 2 is the diffraction line for CeO\(_2\).

D. Stress Determination

The stresses, both residual stresses and loading stresses, on the surface of crystalline materials can be determined by X-ray diffraction measurement data. The dialog box shown in Fig. 4 allows calculating the material elastic constants as Young’s modulus and Poisson ratio used for stress computation. This also makes it possible to revise a material or add a newly measured material and then save to the program library. By clicking “OK”, the dialog box for selecting methods of peak position determination, the correction factors used for stress computation is shown as Fig. 5. The corrected X-ray diffraction line, peak positions, stress together with their 95% confidential limits representing the reproducibility of the calculated value are shown.
Table II shows the residual stresses in a butt-weld of aluminum alloy 1060 using the friction stir welding technique, calculated from XPro v1.0 by using four methods of peak position determination: Parabola, Gaussian, Half-Width, Centroid, together with 95% confidential limits [15]. It is observed that the Gaussian curve and parabola methods give closer value than the other methods. On the other hand, the half-width and the centroid methods have large variation of the calculated value. This shows that the Gaussian curve and parabola methods should be used for stress determination using X-ray diffraction.

E. Phase Quantitative Determination

X-Pro 1.0 can determine the phase component for double phase materials. Choosing “Phase quantitative” on the menu bar, then choosing “Open file”, the dialog box as indicated in Fig. 6 for selecting diffraction peak for each phase is shown. The diffraction parameters for determining diffraction plane such as wavelength, lattice type and parameters are shown.

In the case of high background diffraction of more than 10% of maximum X-ray intensity, background should be subtracted. Otherwise, the background diffraction should be treated as extraneous matter component. In those cases, the button “Background separation” should be chosen for each phase.

Choosing “Phase Quantitative Determination” on the menu bar, the dialog box for phase determination is shown as in Fig. 6. The method of computation has been published as [7]:

\[q_\alpha = \sum E^\alpha_{(h\bar{k}l)} + \sum E^\gamma_{(h\bar{k}l)} \]

\[q_\gamma = \sum E^\gamma_{(h\bar{k}l)} + \sum E^\alpha_{(h\bar{k}l)} \]

where \(E^\alpha_{(h\bar{k}l)} \) and \(E^\gamma_{(h\bar{k}l)} \) are respectively the total diffracted energy from the phases \(\alpha \) and \(\gamma \) of diffraction planes \((h\bar{k}l)^\alpha \) and \((h\bar{k}l)^\gamma \), for wave length \(\lambda \), denoted as \(E^\alpha \) and \(E^\gamma \). \(E^\gamma \) is calculated from the integral intensity at a diffraction peak \((h\bar{k}l) \) as

\[E^\gamma = \sum_{i=1}^{n} x_i \gamma_i \]

where \(x_i = 2(\Theta_i - \Theta_\alpha) \) is the step angle and \(\gamma_i \) is the X-ray count at diffraction position \(2\Theta_i \). Table III is the measurement conditions for doublex austenite-ferrite stainless steel SCS14.

Table IV compares the phase compositions of SCS14 determined from (2) and the microscope imaging method. The strong agreement between the two methods shows the validity of (2) and the computation software can be used effectively in the industrial production.

F. Hardness Determination

Many evidences show that the hardness of crystalline materials has relation to the broadness of the diffraction line. A previous research has determined a linear relation between the Rockwell hardness HRC and the half-width B of the diffraction line of quenched and tempered carbon steel [8]. XPro v1.0 is integrated with function for determining the hardness of quenched carbon steel [8].

\[HRC = 87.85B + 20.34 \]

where \(B = 2\sqrt{2\ln2}\sigma \) is the half-width of the diffraction line and \(\sigma \) is the standard deviation of the Gaussian curve.

In the case of the parabola method,
HRC = 103.01B + 21.31

where B is the full width at half of maximum X-ray intensity of the parabola fitted to the diffraction line.

Table V is the measurement conditions for eleven quenched and tempered specimens in water for 45 minutes. Fig. 7 is the relation between the HRC hardness and the line half-width. The straight lines in Fig. 7 show that the developed XPro 1.0 can determine the hardness from the X-ray diffraction measurement data.

III. CONCLUSIONS

A new material analyzing software X-Pro 1.0 has been developed with various computational functions to evaluate material properties such as residual stress, hardness, phase quantity; the calculation for different measured data has shown that the computation has very high accuracy.

Further development of the research could be:

a. Development of phase quantitative analyzing for material having three phases or more;
b. Development of hardness of many advanced alloy materials such as nickel-based alloy and aluminum alloys;
c. Determining the thickness for coating layers
d. Integration of function of corrosion mapping using ultrasonic technique;

REFERENCES

Asso. Prof. Dr. Le Chi Cuong graduated the Master and PhD. Courses from the Nagaoka University of Technology (Japan) in 2005. He is the member of ASNT, JSNT, and ASME. His research areas include mechanical engineering system and material science. The research topics are automation, and material property analyzing using nondestructive techniques.

After graduating he had three years working in the steel company. November 2013, he was recognised by The Vietnamese Ministry of Education and Training as Associate Professor. Currently, he is the Head of the Automation Technology Department, University of Technical Education-HCMC, Vietnam. His current interests may be listed as X-ray analysis, NDT inspection, and welding automation.