Formation of Vasoactive Amines in Dry Fermented Sausage Petrovská Klobása during Drying and Ripening in Traditional and Industrial Conditions

Tatjana A. Tasić, Predrag M. Ikonić, Ljiljana S. Petrović, Marija R. Jokanović, Vladimir M. Tomović, Branislav V. Sojić, Snežana B. Škaljac

Abstract—Formation of histamine, tryptamine, phenylethylamine and tyramine (vasoactive amines) in dry fermented sausage Petrovská klobása during drying and ripening in traditional room (B1) and industrial ripening chamber (B3) were investigated. Dansyl chloride derivatized vasoactive amines were determined using HPLC-DAD on Eclipse XDB-C18 column.

Histamine, the most important amine from food safety point of view, was not detected in any analyzed sample. Unlike most of the other fermented sausages, where tyramine is reported as the most abundant amine, in Petrovská klobása tryptamine was the most abundant vasoactive amine in both groups of sausages even though concentrations of tryptamine and tyramine in B3 sausages at the end of ripening were nearly the same (39.8 versus 39.6mg/kg). Sum of vasoactive amines in samples varied from not detected ND (B3) to 176 mg/kg (B1), with concentration of 36.1 (B3) and 73.6 (B1) mg/kg at the end of drying and 96 (B3) and 176 (B1) mg/kg at the end of ripening period. Although the sum of vasoactive amines has increased from the end of drying (45. and 90. day) to the end of ripening period (120. day), during whole production period these values did not exceed 200 mg/kg proposed as possible indicator of hygienic conditions and GMP in the sausage production.

Keywords—Vasoactive amines, traditional dry fermented sausage Petrovská klobása.

I. INTRODUCTION

The vasoactive amines (histamin, triptamin, fenilethilamin and tiramin) are biologically active amines which possess an important physiological role in human due to its vasoactive and psychoactive properties. Also, these compounds represent a food poisoning hazard since intake of foods with their high concentration may cause a chemical intoxication [1]-[5].

Eerola et al. [6] proposed that sum of vasoactive biogenic amines (tyramine, histamine, phenylethylamine, tryptamine) as a possible indicator of hygienic conditions and good manufacturing practice (GMP) in the sausage production should not exceed 200mg/kg.

II. MATERIAL AND METHODS

A. Material

Two groups of sausages dried and ripened in traditional (B1) and industrial (B3) conditions were examined in this study. Both groups of sausages were produced in traditional manner. Minced lean pork meat 80% and pork fat 20% were mixed with red hot paprika powder (2.50%), salt (1.80%), crushed garlic (0.20%), caraway (0.20%) and sugar (0.15%). All ingredients were mixed approximately 10min using traditional technique. The mixture was stuffed into natural casings, pig intestine (rectum), around 40cm long and near 5cm in diameter. Raw sausages from B1 group were processed in traditional smoking/drying room, while sausages from B3 group were processed in industrial ripening chamber.
According to Serbian legislation [15] moisture content for dry fermented sausages have to be less than 35%. Sausages from B1 group dried in traditional room (temperature from 2.6°C to 12.4°C; relative humidity from 43.3% to 93.0%) needed 90 days to reach required moisture content, while sausages from B3 group dried in industrial ripening chamber (temperature of 10°C; relative humidity ~75%) reached this value after 45 days. At the end of drying period 90th day (B1) and 45th day (B3), sausages from both groups were ripened at 10°C, 75% RH further on until 120th day.

B. Methods

1. Biogenic Amines Determination

Tryptamine, phenylethylamine, histamine, and tyramin were determined following the high-performance liquid chromatography. Sample extraction and derivatization were done according to Eerola et al. [16]. HPLC analysis was performed by using a liquid chromatography (Agilent 1200 series), equipped with a diode array detector (DAD), Chemstation Software (Agilent Technologies), a binary pump, an online vacuum degasser, an auto sampler and a thermostated column compartment, on an Agilent, Eclipse XDB-C18, 1.8μm, 4.6 x 50mm column.

Solvent gradient was performed by varying the proportion of solvent A (acetonitrile) and solvent B (water). Flow rate was 1.5mL/min., column temperature was 40°C and 5μL of sample was injected [17].

All analyzes were performed on three sample sausages from each batch, in duplicate

2. Statistical Analysis

Statistical analysis in biogenic amines content between groups of sausages (B1 and B3) was done at the end of drying and at the end of ripening period. One way (ANOVA), Post-hoc (Duncan test) was performed. Differences were considered significant at P < 0.05.

III. RESULTS AND DISCUSSION

Histamine was not detected in any of the analyzed samples (Table I). Since histamine is well known for its toxicity, the absence of this vasoactive biogenic amine is very important from toxicological and food safety point of view.

<table>
<thead>
<tr>
<th>HISTAMINE CONTENT IN SAUSAGES DRIED AND RIPENED IN TRADITIONAL AND INDUSTRIAL CONDITIONS</th>
<th>Histamine (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 2 6 9 12 15 30 60 90 120</td>
<td></td>
</tr>
<tr>
<td>B1 ND ND ND ND ND ND ND ND ND ND</td>
<td></td>
</tr>
<tr>
<td>B3 ND ND ND ND ND ND ND ND ND ND</td>
<td></td>
</tr>
</tbody>
</table>

Formation of tryptamine, phenylethylamine, and tyramine during drying and ripening period is shown at Fig. 1. Tryptamine content in samples varied from not detected ND (B1, B3) to 121 mg/kg (B1), with concentration of 28.7 (B3) and 38.1 (B1) mg/kg at the end of drying and of 39.8 (B3) and 121 (B1) mg/kg at the end of ripening. The differences in tryptamine content between groups at the end of drying as well as at the end of ripening period were significant (P<0.05).

Phenylethylamine content in samples varied from not detected ND (B3) to 43.1 (B1), with concentration of ND (B3) and 28.6 (B1) mg/kg at the end of drying and of 16.6 (B3) and 43.1 (B1) mg/kg at the end of ripening. The differences in
phenylethylamine content between groups at the end of drying as well as at the end of ripening period were significant (P>0.05).

Tyramine content in samples varied from not detected ND (B1, B3) to 39.6 (B3), with concentration of 6.90 mg/kg (B1) and 7.34 mg/kg (B3) mg/kg at the end of drying and 13.1 mg/kg (B1) and 39.6 (B3) mg/kg at the end of ripening period. The differences between groups in tyramine content at the end of drying were not significant (P>0.05), while at the end of ripening period differences were significant (P<0.05).

Unlike most of the other fermented sausages, where tyramine is reported as the most abundant amine [4], [5], [7], [8], [18]-[20], in Petrovská klobása tryptamine was the most abundant vasoactive amine in both groups of sausages at the end of drying and at the end of ripening period, even though concentrations of tryptamine and tyramine in B3 sausages at the end of ripening were nearly the same (39.8 versus 39.6 mg/kg).

IV. CONCLUSION

Histamine was not detected in any of the analyzed samples which is very important from toxicological and food safety point of view.

Tyramine was the prevailing vasoactive amine in sausages dried and ripened in traditional (B1) and industrial (B3) conditions at the end of drying and at the end of ripening period.

Sum of vasoactive amines during whole production period did not exceed proposed value of 200 mg/kg.

REFERENCES

[18] E. Parente, M. Martuscelli, F. Gardini, S. Grieco, M. A. Crudele, G Suzzi, “Evolution of microbial populations and biogenic amine...
