Nonlinear Equations with N-dimensional Telegraph Operator Iterated K-times

Jessada Tariboon

Abstract—In this article, using distribution kernel, we study the nonlinear equations with \(n \)-dimensional telegraph operator iterated \(k \)-times.

Keywords—Telegraph operator, Elementary solution, Distribution kernel.

I. INTRODUCTION

The telegraph equation arises in the study of propagation of electrical signals in a cable of transmission line and wave phenomena. The interaction of convection and diffusion or reciprocal action of reaction and diffusion describes a number of nonlinear phenomena in physics, chemistry and biology. Further, the telegraph equation is more suitable than ordinary diffusion in modeling reaction-diffusion for such branches of applied sciences. We refer the reader to [1]-[4] and the references therein.

Kananthai [5]-[6] has studied some properties and results of the distribution \(e^{\alpha x} \Box^k \delta \) and solved the convolution equation

\[
e^{\alpha x} \Box^k \delta \ast u(x) = e^{\alpha x} \sum_{r=0}^{m} C_r \Box^r \delta,
\]

which is related to the ultra-hyperbolic equation, where \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \), \(\alpha x = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n \), \(C_r \) are given constants for \(r = 1, 2, \ldots, m \), \(\Box^k \) is the \(n \)-dimensional ultra-hyperbolic operator iterated \(k \) times defined by

\[
\Box^k = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2} \right)^k
\]

with \(p + q = n \) and \(\delta \) is the Dirac-delta distribution with \(\Box^0 \delta = \delta \), \(\Box^1 \delta = \Box \delta \).

In this work, by applying the distribution \(e^{\alpha x} \Box^k \delta \), we study the elementary solution of the following \(n \)-dimensional telegraph equation

\[
\left(\frac{\partial^2}{\partial x_1^2} + 2 \beta \frac{\partial}{\partial t} + \beta^2 - \Delta \right)^k u(x, t) := T^k u(x, t) = \delta(x, t),
\]

where \(\Delta \) is the \(n \)-dimensional Laplacian operator iterated \(k \) times defined by

\[
\Delta^k = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \cdots + \frac{\partial^2}{\partial x_n^2} \right)^k
\]

and \(\beta \) is a positive constant. As an application, we solve the nonlinear equation with \(n \)-dimensional telegraph operator iterated \(k \)-times of the form

\[
\left(\frac{\partial^2}{\partial t^2} + 2 \beta \frac{\partial}{\partial t} + \beta^2 - \Delta \right)^k u(x, t) = f(x, t),
\]

where \(f(t, x) \) is a generalized function.

II. SOME DEFINITIONS AND LEMMAS

Definition 1. Let \(x = (x_1, x_2, \ldots, x_n) \) be a point of \(\mathbb{R}^n \) and write

\[v = x_1^2 + x_2^2 + \cdots + x_p^2 - x_{p+1}^2 - x_{p+2}^2 - \cdots - x_{p+q}^2, \quad p + q = n. \]

Define by \(\Gamma _+ = \{ x \in \mathbb{R}^n : x_1 > 0 \text{ and } \beta > 0 \} \) designating the interior of forward cone and \(\Gamma _+ \) designating its closure.

For any complex number \(\gamma \), we define the function

\[
R^\gamma_H(v) = \begin{cases} \frac{(\gamma - n/2)}{K_n(\gamma)} & \text{if } x \in \Gamma _+, \\ 0 & \text{if } x \notin \Gamma _+, \end{cases}
\]

where the constant \(K_n(\gamma) \) is given by the formula

\[
K_n(\gamma) = \frac{\pi^{(n-1)/2} \Gamma \left(\frac{2n-2}{\gamma} \right) \Gamma \left(\frac{1-n}{2} \right) \Gamma \left(\frac{2}{\gamma} \right)}{\Gamma \left(\frac{2n+2}{\gamma} \right) \Gamma \left(\frac{2}{\gamma} \right)}.\]

Let \(\text{supp} R^\gamma_H(v) \subset \Gamma _+ \) where \(\text{supp} R^\gamma_H(v) \) denotes the support of \(R^\gamma_H(v) \). The function \(R^\gamma_H(v) \) is first introduced by Nozaki [7] and is called the ultra-hyperbolic kernel of Marcel Riesz. Moreover, \(R^\gamma_H(v) \) is an ordinary function if \(\text{Re}(\gamma) \geq n \) and is a distribution of \(\gamma \) if \(\text{Re}(\gamma) < n \).

Definition 2. Let \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \) and write

\[s = x_1^2 + x_2^2 + \cdots + x_p^2. \]

For any complex number \(\beta \), define the function

\[
R^\beta_H(s) = 2^{-\beta} \pi^{-n/2} \Gamma \left(\frac{n-\beta}{2} \right) \frac{s^{(\beta-n)/2}}{\Gamma \left(\frac{\beta}{2} \right)},
\]

The function \(R^\beta_H(s) \) is called the elliptic kernel of Marcel Riesz and is ordinary function if \(\text{Re}(\beta) \geq n \) and is a distribution of \(\beta \) if \(\text{Re}(\beta) < n \).

Lemma 1. [5] Let \(L \) be the partial differential operator defined by

\[
L = \Box - 2 \sum_{i=1}^{p} \alpha_i \frac{\partial}{\partial x_i} - \sum_{j=p+1}^{p+q} \alpha_j \frac{\partial}{\partial x_j} + \left(\sum_{i=1}^{p} \alpha_i^2 - \sum_{j=p+1}^{p+q} \alpha_j^2 \right).\]
Then
\[(e^{\alpha x} \square^k \delta) \ast u(x) = L^k u(x) = \delta \quad (7) \]
In addition, the unique elementary solution of (7) is given by
\[u(x) = e^{\alpha x} R_{2k}^H(x), \]
where \(R_{2k}^H(x) \) is defined by (3) with \(\gamma = 2k \).

Lemma 2. [8] \(e^{\alpha t} \delta^{(k)}(x) = (D - \alpha)^k \delta \) where \(D \equiv \frac{\partial}{\partial x} \) and \(e^{\alpha t} \delta^{(k)}(x) \) is a tempered distribution of order \(k \) with support 0.

Lemma 3. [9] Let \(z \) be a complex number. Then
\[\Gamma(z) = (z + \frac{1}{2}) = 2^{1-2z} \sqrt{\pi} \Gamma(2z), \quad z \neq 0, -1, -2, \ldots \quad (8) \]

III. MAIN RESULTS

Now, we shall state and prove the following main results.

Theorem 1. Let \(T^k \) be the partial differential operator which iterated \(k \)-times defined by
\[T^k = \left(\frac{\partial^2}{\partial x^2} + 2\beta \frac{\partial}{\partial t} + \beta^2 - \Delta \right)^k \quad (9) \]
where \(\Delta \) is the \(n \)-dimensional Laplacian operator and \(\beta \) is a given positive constant. Then \(u(x,t) = e^{-\beta t} M_{2k}(w) \) is a unique elementary solution of (1), where \(M_n(w) \) is defined by
\[M_n(w) = \begin{cases} \frac{w^{n+1/3}}{n_{n+1/3}} & \text{if } t \in \Gamma^+, \\ 0 & \text{if } t \not\in \Gamma^+, \end{cases} \quad (10) \]
where \(w = t^2 - x_1^2 - x_2^2 - \cdots - x_n^2, t \) is the time and
\[H_{n+1}(n) = \frac{n!(n-1)/2^{n-1}}{2^n} \Gamma \left(\frac{n+n+1}{2} \right) \Gamma \left(\frac{n}{2} \right). \quad (11) \]

Proof. Firstly, we define the \(n+1 \)-dimensional ultra-hyperbolic operator as
\[\Box_{n+1} = \left(\frac{\partial^2}{\partial x^2} - \Delta \right). \]
Setting \(\alpha_2 = \alpha_3 = \cdots = \alpha_n = 0 \), we have
\[e^{\alpha(t,x) \square_{n+1}^k} \delta(x,t) = e^{\alpha t} \left(\frac{\partial^2}{\partial x^2} - \Delta \right)^k \delta(x,t) \quad (12) \]
Applying Lemma 3 for \(p = 1, q = n \) and \(p + q = n + 1 \), (3) and (4) are reduced to (9) and (10), respectively.

Indeed, we have \(\delta(x,t) = \delta(x) \delta(t) \) and \(e^{\alpha t} \delta(x) = \delta(x) \).

Using Lemma 2, we get
\[e^{\alpha t} \left(\frac{\partial^2}{\partial x^2} - \Delta \right) \delta(x,t) = e^{\alpha t} \frac{\partial^2}{\partial x^2} \delta(x,t) - e^{\alpha t} \Delta \delta(x,t) \]
substituting \(\alpha_1 = -\beta \), it follows that
\[e^{-\beta t} \left(\frac{\partial^2}{\partial x^2} - \Delta \right) \delta(x,t) = \left(\frac{\partial^2}{\partial x^2} + 2\beta \frac{\partial}{\partial t} + \beta^2 - \Delta \right) \delta(x,t) \]
\[= T \delta(x,t) \quad (13) \]
Convolving \(k \)-times for both sides of the above equation by \(e^{-\beta t} \left(\frac{\partial^2}{\partial x^2} - \Delta \right) \delta(x,t) \), we have
\[e^{-\beta t} \left(\frac{\partial^2}{\partial x^2} - \Delta \right) \delta(x,t) \ast \cdots \ast e^{-\beta t} \left(\frac{\partial^2}{\partial x^2} - \Delta \right) \delta(x,t) = e^{-\beta t} \left(\frac{\partial^2}{\partial x^2} - \Delta \right)^k \delta(x,t) \]
\[= T \delta(x,t) \ast \cdots \ast T \delta(x,t) \]

Then (1) can be written as
\[T^k u(x,t) = e^{-\beta t} \left(\frac{\partial^2}{\partial x^2} - \Delta \right)^k \delta(x,t) \ast u(x,t) = \delta(x,t) \quad (14) \]
Convolving both sides of the above equation by \(e^{-\beta M_{2k}(w)} \) and applying Lemma 1, we have
\[u(x,t) = e^{-\beta M_{2k}(w)} \ast f(x,t) \quad (15) \]
where \(M_{2k}(w) \) is defined by (9) with \(\eta = 2k \).

Theorem 2. Given the equation
\[\left(\frac{\partial^2}{\partial x^2} + 2\beta \frac{\partial}{\partial t} + \beta^2 - \Delta \right) u(x,t) = f(x,t), \quad (16) \]
where \(f(x,t) \) is a given generalized function and \(u(x,t) \) is an unknown function. Then,
\[u(x,t) = e^{-\beta M_{2k}(w)} \ast f(x,t) \quad (17) \]
Proof. Convolving both sides of (16) by \(e^{-\beta M_{2k}(w)} \) and applying the Theorem 1, we obtain (12) as required.

Remark 3. By using the method of proving Theorem 1 together with suitable modifications, we have \(u(x,t) = e^{-\beta t} \left(-1 \right)^k R_{2k}^S(s) \) is a unique elementary solution of the following equation
\[\left(\frac{\partial^2}{\partial x^2} + 2\beta \frac{\partial}{\partial t} + \beta^2 - \Delta \right) u(x,t) = \delta(x,t), \quad (18) \]
where \(R_{2k}^S(s) \) is defined by Definition 2 with \(\beta = 2k, s = t^2 + x_1^2 + x_2^2 + \cdots + x_n^2 \) and a constant \(n \) in (5) is replaced by \(n + 1 \).

ACKNOWLEDGMENT

This research is supported by King Mongkut’s University of Technology North Bangkok, Thailand.

REFERENCES