Resistive Switching in TaN/AlNₓ/TiN Cell

Hsin-Ping Huang, Shyankay Jou

Abstract—Resistive switching of aluminum nitride (AlNₓ) thin film was demonstrated in a TaN/AlNₓ/TiN memory cell that was prepared by sputter deposition techniques. The memory cell showed bipolar switching of resistance between +3.5 V and −3.5 V. The resistance ratio of high resistance state (HRS) to low resistance state (LRS), \(R_{\text{HRS}}/R_{\text{LRS}} \), was about 2 over 100 cycles of endurance test. Both the LRS and HRS of the memory cell exhibited ohmic conduction at low voltages and Poole-Frenkel emission at high voltages. The electrical conduction in the TaN/AlNₓ/TiN memory cell was possibly attributed to the interactions between charges and defects in the AlNₓ film.

Keywords—Aluminum nitride, nonvolatile memory, resistive switching, thin films.

I. INTRODUCTION

RESISTIVE Random Access Memory (RRAM) has been extensively studied for the application in advanced nonvolatile memory [1]. In general, an RRAM cell has two resistance states that are suitable to represent ON- and OFF-states of digital signals. Typical RRAM devices are made of a sandwiched metal-insulator-metal (MIM) structure that is easy to integrate with complementary metal-oxide-semiconductor (CMOS) processes. Until now, most RRAM studies employed oxides as resistor materials [2], [3]. Recently, RRAM devices using nitride resistors, including AlN and SiN, were of interest. By utilizing various metallic electrodes with AlN resistor, bipolar switching of resistance has been demonstrated in Cu/AlN/Pt [4], Ti/AlN/Pt [5], and W/AlN/Al [6] systems. Other conductive materials such as Ti and indium tin oxide (ITO) also have been employed as electrodes in AlN-based RRAM, such as Pt/AIN/TiN [7], Cu/AIN/TiN [8], and ITO/AIN/ITO [9]. Similarly, SiN-based RRAM utilizing various electrode materials showed resistive switching behaviors. RRAM of Ag/SiNx/Pt [10], Ag/SiNx/Al [11], Au/SiNx/Ti [12], and Ti/SiNx/Ti [13] showed bipolar switching of resistance, whereas ITO/SiNx/ITO exhibited unipolar switching of resistance [14].

Both aluminum nitride and silicon nitride are dielectric materials with nitride-related traps that might dominate their charge transport behaviors. Electrical conduction and resistive switching in some nitride RRAM devices were attributed to the interactions of electrical charges with nitride-related traps [5], [8], [9], [11]–[13]. On the other hand, electrical conduction and resistive switching in some other nitride RRAM devices were governed by paths of metallic filaments which were generated from interactions of electrode materials and nitride resistors [4], [8], [10], [14].

Metallic nitrides such as TiN, TaN and WN have been utilized as conductive materials in CMOS technologies. TiN has also been utilized as one electrode together with another metallic electrode in AlN-based RRAM devices [7]–[8]. In our previous studies, we have employed TaN electrode in oxide-based RRAM devices [15]–[16]. In this study, we employed TiN and TaN electrodes together with an AlNₓ resistor to make a nitride RRAM and demonstrated bipolar switching of resistance in a TaN/AlNₓ/TiN device. Furthermore, we correlated the structure of the AlNₓ film and resistive switching properties for the TaN/AlNₓ/TiN device.

II. EXPERIMENTAL

Thin films of a TiN bottom electrode, an AlNₓ resistor layer and a TaN top electrode were sequentially deposited on an SiO2-covered Si substrate using DC magnetron sputtering techniques. The sputtering chamber was evacuated to a pressure less than \(6.7 \times 10^{-5} \) Pa (\(5 \times 10^{-6} \) torr) prior to the depositions. The depositions were conducted in flowing mixtures of Ar and N₂ and at ambient temperature. The sputter deposition parameters are summarized in Table I.

![Table I](image)

<table>
<thead>
<tr>
<th></th>
<th>TiN</th>
<th>AlNₓ</th>
<th>TaN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC power (W)</td>
<td>20</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Working pressure (Pa)</td>
<td>0.67</td>
<td>0.8</td>
<td>0.67</td>
</tr>
<tr>
<td>Ar flow rate (cm³/min)</td>
<td>15</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>N₂ flow rate (cm³/min)</td>
<td>2</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

Structure of the blanket AlNₓ film was analyzed by X-ray diffraction (XRD) using Cu Kα radiation and by transmission electron microscopy (TEM). Binding energies of the AlNₓ film were investigated by X-ray photoelectron spectroscopy (XPS) using Al Kα radiation (1486.7 eV). The binding energies of Al 2p and N 1s were corrected with C 1s peak of 284.5 eV.

A TaN/AlNₓ/TiN MIM structure with an 150-nm-thick TaN, a 50-nm-thick AlNₓ and an150-nm-thick TiN was fabricated for electrical measurements. In order to form the MIM structure, a blanket TiN layer was coated on the top of an SiO2-covered Si substrate, whereas the AlNₓ layer and the TaN layer were deposited through shadow masks of 2.0 mm and 0.15 mm in diameter, respectively. To study resistive switching properties of the TaN/AlNₓ/TiN device, current–voltage (I–V) characterization was performed by cyclically applying DC voltages across the TaN top electrode and the TiN bottom.
III. RESULTS AND DISCUSSION

Fig. 1 shows the XRD pattern of the AlN_x film with peaks centering at diffraction angles, 2θ, of 33.3°, 36.2°, 37.9°, 50.0°, 59.5° and 66.1°, which represent reflections of (100), (002), (101), (102), (110) and (103) planes of wurtzite aluminum nitride. Fig. 2 shows the cross-sectional TEM image of the AlN_x film. The AlN_x layer is composed of crystals with clear lattice fringes as seen at the upper left to the lower right regions in Fig. 2. Other regions comprise randomly arranged atoms, indicating the presence of amorphous phase in the AlN_x film. According to the XRD and TEM analyses, the AlN_x film prepared by sputter deposition in this study is composed of a mixture of crystalline and amorphous phases.

The XPS analyses showed that the AlN_x film was composed of Al, N and O. According to studies of deposition and oxidation of AlN_x, the incorporation of oxygen in AlN_x was possibly due to adsorbed contamination, interaction of AlN_x film with air, or the limit of deposition condition [17]–[19]. The incorporated oxygen could substitute for nitrogen to form oxygen-related defects in AlN crystals [20], [21], or form oxynitride phase (AlO_xN_y) [22]. Fig. 3 (a) displays the XPS spectrum of Al 2p and two fitted peaks of the AlN_x film. The fitted Al2p #1 peak with a binding energy of 73.3eV is assigned to bound Al–N in wurtzite AlN, whereas the Al2p #2 with a binding energy of 74.9eV is assigned to Al–O bond [18], [19]. The ratio of Al–N to Al–O is about 89:11 for the AlN_x film. Further, the N 1s spectrum and two fitted peaks are shown in Fig. 3 (b). The fitted N1s #1 peak with a binding energy of 396.6eV originates from N–Al bond in wurtzite AlN, and the N1s #2 peak with a binding energy of 398.9eV can be assigned to nitrogen bound indirect to oxygen via an aluminum ion, i.e., N–Al–O bonding [19]. The ratio of Al–N to N–Al–O is about 84:16. The N–Al bond was suggested to be associated with the AlN crystals in the AlN_x film, whereas the N-Al-O bonds may be present in the AlN_x crystallites and on their surface [21]. On the other hand, no N 1s peak with binding energies of around 395 eV or greater than 400 eV are observed in Fig. 3 (b). Hence the AlN_x film contained no N–N and N–O bonds. According to the XRD, TEM and XPS analyses, the AlN_x film was composed of crystalline and amorphous phases with mainly Al–N bonds and some N–Al–O bonds. Therefore, nitrogen- and oxygen-related defects were present in the AlN_x film.

Resistive switching was demonstrated through cyclically measuring I–V curves of the TaN/AlN_x/TiN RRAM device. During the I–V measurement DC voltages were applied to the top TaN electrode while the bottom TiN electrode grounded, as displayed at the inset in Fig. 4. The RRAM device showed resistive switching behavior without needing a prior electroforming procedure in this study. Fig. 4 depicts the I–V curve of the TaN/AlN_x/TiN RRAM device in the first cycle of voltage sweep. The I–V curve presents bipolar resistive switching at counterclockwise direction of +3.5 V → 0 V → −3.5 V → 0 V → +3.5 V. The as-fabricated RRAM device is in high resistance state (HRS), and then changes to low resistance state (LRS) at a SET voltage of −3.5 V. The LRS state is stable and reproducible in subsequent cycling. After the first cycle, the device shows consistent and reliable switching behavior with a resistive ratio of 10−100 in both HRS and LRS.
remains until a RESET voltage of +3.5 V is applied to the RRAM device, where the RRAM device changes back to HRS. The TaN/AlN/TiN RRAM device can be reversibly switched between HRS and LRS by cyclically applying voltage sweeps.

The TaN/AlN/TiN RRAM device can be reversibly switched between HRS and LRS by cyclically applying voltage sweeps. Fig. 4 shows the current-voltage (I-V) curve of the TaN/AlN/TiN RRAM device in the 1st cycle of voltage sweep. The inset is a schematic drawing of the device.

To realize conduction mechanisms for the TaN/AlN/TiN RRAM device, a logarithmic plot of the I-V curve for the first cycle of resistive switching is depicted in Fig. 5. The slopes of the curves for both LRS and HRS are about \(\ln(1) \) in the low-voltage region, thus the electrical conduction agrees with Ohm’s law (I=V). In the high-voltage region, the slopes are greater than 1 for both LRS and HRS, thus other conduction mechanisms must be considered. Fig. 6 presents the plots of \(\ln(1/V) \) against \(V^{1/2} \) for the LRS and HRS of the TaN/AlN/TiN device in the high-voltage region. Both plots are linear and fit with Poole-Frenkel (PF) emission model [23]. Therefore, nitride-related defects and oxygen-related defects existed in the AlN film. These defects could facilitate charge transport via hopping conduction. At low voltages the conduction was ascribed to transport of thermally excited electrons through charge trapping process and exhibited ohmic conduction [11]. Then trap-to-trap hopping took place at high voltages via field-enhanced excitation of trapped electrons, which is known as PF emission [11]. Moreover, conductive path comprising trapped electrons could form at local region of high-density defects in LRS. Part of the conductive path was ruptured through de-trapping process and then the device was switched to HRS.

Fig. 7 shows the result of the endurance test for the TaN/AlN/TiN RRAM device by plotting the resistance data at +0.2 V for LRS and HRS. The resistance \(R_{HRS}/R_{LRS} \) is about 2 for 100 cycles of resistive switching measurements. Both \(R_{HRS} \) and \(R_{LRS} \) increase with measurement cycles at the beginning and become stable after 60 cycles of measurements. The reason for the increase of resistance of the TaN/AlN/TiN RRAM device in the beginning of the switching measurement is not realized yet. It is suggested that the surface of the TaN top electrode would possibly react with air and form a thin insulating surface during the resistive switching measurement. This problem can be resolved by adding a passivation coating to protect the TaN top electrode in future study. However, a passivation layer for the top TaN electrode is not required in a real RRAM device because the memory cells are placed inside an IC chip with protective packaging substance.
The resistive switching of a TaN/AlN/Ti RRAM device was inspected. The nitride RRAM device exhibited bipolar switching of resistance. The resistive switching behavior was possibly correlated with nitrogen-related defects and oxygen-related defects in the AlN film.

REFERENCES

