The *in vitro* Effects of Various Immunomodulatory Nutritional Compounds on Antigen-Stimulated Whole-Blood Culture Cytokine Production

Ayu S. Muhamad, Michael Gleeson

Abstract—Immunomodulators are substances that alter immune system via dynamic regulation of messenger molecules. It can be divided into immunostimulants and immunosuppressants. It can help to increase immunity of people with a low immune system, and also can help to normalize an overactive immune system. Aim of this study is to investigate the effects of *in vitro* exposure to low and high doses of several immunomodulators which include caffeine, kaloba and quercetin on antigen-stimulated whole blood culture cytokine production. Whole blood samples were taken from 5 healthy males (age: 32 ± 12 years; weight: 75.7 ± 6.1 kg; BMI: 24.3 ± 1.5 kg/m²) following an overnight fast with no vigorous activity during the preceding 24 h. The whole blood was then stimulated with 50 µl of 100 x diluted Pediacel vaccine and low or high dose of immunomodulators in the culture plate. After 20 h incubation (5% CO₂, 37°C), it was analysed using the Evidence Investigator to determine the production of cytokines including IL-2, IL-4, IL-10, IFN-γ, and IL-1α. Caffeine and quercetin showed a tendency towards decrease cytokine production as the doses were increased. On the other hand, an upward trend was evident with kaloba, where a high dose of kaloba seemed to increase the cytokine production. In conclusion, we found that caffeine and quercetin have potential as immunosuppressant and kaloba as immunostimulant.

Keywords—Caffeine, cytokine, immunomodulators, kaloba, quercetin.

I. INTRODUCTION

Immunomodulation is a therapeutic approach in which we try to intervene in auto regulating processes of the host defense system. Immunomodulators can be defined as substances (drugs and nutrients) that alter the activities of the immune system via dynamic regulation of messenger molecules such as cytokines, adhesion molecules, nitric oxide, hormones, neurotransmitters, and other peptides. Immunomodulators can help to increase immunity of people with a low immune system, and also can help to normalize an overactive immune system.

Generally, these compounds can be divided into immunosuppressants and immunostimulants [1]. Numerous *in vitro* and *in vivo* studies have found that immunomodulators modulate the secretion of multiple cytokines [2].

Altering cytokine expression with immunomodulators may offer some therapeutic potential. As reviewed by Del-Rio-Navarro and colleagues [3], on average, immunostimulants reduce the incidence of acute respiratory tract infections in children by 40%. Several published studies have suggested that caffeine [4], [5] and quercetin [6], [7] as immunosuppressants while kaloba [8], [9] as immunostimulants.

Caffeine is present in coffee and tea and is a member of the methylxanthine family of drugs; it is the most widely consumed psychoactive substance by humans [10]. Immunomodulatory effects of caffeine, a well-known psychostimulant substance, have been extensively studied and it appears that caffeine modulates both innate and adaptive immune responses.

Kaloba is an extract derived from the root of plants that are indigenous to South Africa. It comes from the family Geraniaceae and genus *Pelargonium* and was traditionally used to treat dysentery, diarrhea, colds, wounds, fatigue, fevers, hepatic complaints, generalized malaise, and respiratory tract infections such as tuberculosis, bronchitis, and sinusitis [11], [12]. Furthermore, studies reported that it is successfully employed for the treatment of ear, nose, and throat disorders as well as respiratory tract infections [8], [13]-[15]. Quercetin is a flavonol that can be found in fruits and vegetables which is believed to reduce infection risk during intense exercise since it has anti-inflammatory and antioxidant properties, beside its psychostimulant actions and its ability to stimulate mitochondrial biogenesis [16]. This was supported by one study where it was found that quercetin ingestion significantly reduced the upper respiratory tract infection (URTI) incidence in the cyclists [17]. However, current evidence concerning their efficacy is limited. Hence, this present study intended to investigate the effects caffeine, quercetin and kaloba on antigen-stimulated whole blood culture cytokine production *in vitro*.

II. METHODS

A. Participants

Five healthy men were recruited as participants in this study. Mean age, weight, and BMI of the participants were 32 ± 12 years, 75.7 ± 6.1 kg, and 24.3 ± 1.5 kg/m² respectively.

B. Procedures

Participants were requested to come to the laboratory between 09:00 and 10:00 following an overnight fast from 21:00. However, they were permitted to drink plain water.
They were also asked to refrain from any vigorous physical activity in the preceding 24 h. Blood samples were collected into K₃EDTA and lithium heparin collection tubes as described in the general methods. This study obtained ethics approval from the Loughborough University Research Ethics Committee.

C. Blood Analysis

Blood samples were taken from an antecubital vein by venepuncture with a 21 gauge needle into heparin and/or K3EDTA collection tube (Starstedt, Leicester, UK) using the vacutainer method. Blood samples collected in the K₃EDTA tube were used for haematological analysis (haematocrit (Hct), haemoglobin (Hb) concentration, red blood cell (RBC) count, and total and differential leukocyte counts) using an automated haematology analyser (AcT.5 diff, Beckman Coulter, High Wycombe, UK). Each sample was measured twice and the average value was recorded. The intra-assay coefficient of variation for all measured variables was less than 3.0%.

Blood samples collected in heparin tube were used for determination of antigen-stimulated cytokine production; 20 h of whole blood culture incubation with immunomodulators and vaccine followed by analysis by using Evidence Investigator (Randox, UK).

D. Immunomodulatory Nutritional Compounds Preparation

Caffeine low blood dose was targeted at 9.71 mg/L [18]. Caffeine solution needed = 100 x 9.71 mg/L = 971 mg/L = 97.1 mg/100 ml. Thus, 97.1 mg caffeine was added to 100 ml RPMI solution.

In the whole blood culture, low dose (9.71 mg/L) of caffeine was achieved by adding 10 µl of this solution into the culture wells while for high dose (97.1 mg/L), 100 µl was added.

Quercetin low blood dose was targeted at 0.02 mg/ml [19]. Quercetin solution needed = 100 x 0.02 mg/ml = 2 mg/ml. As quercetin solution has low solubility in water, the solution was made up in alcohol. Then, this solution was 10 times diluted with RPMI to make quercetin solution at 200 µg/ml.

In the whole blood culture, low dose (0.02 mg/ml) of quercetin was achieved by adding 10 µl of this solution into the culture wells while for high dose (0.2 mg/ml), 100 µl was added.

Kaloba low blood dose was targeted at 3 µg/ml [20]. Kaloba solution needed = 100 x 3 µg/ml = 300 µg/ml. Thus, 20 mg Kaloba was added to 66.7 ml RPMI solution.

In the whole blood culture, low dose (3 µg/ml) of Kaloba was achieved by adding 10 µl of this solution into the culture wells while for high dose (30 µg/ml), 100 µl was added.

E. Whole Blood Culture Incubation

As shown in the Table I, required volumes of RPMI-1640 medium were added into the culture wells, followed by 50 µl of 100 x diluted vaccine. Next, the appropriate amount of immunomodulators solution was added, followed by 0.25 ml of blood. After gently mixing, they were incubated for 20 h in the CO₂ incubator at 5% CO₂ and 37°C (MiniGalaxy E, Livingston, UK).

After 20 h incubation, blood culture was transferred into eppendorf tubes and spun for 4 min at 12,000 rpm in a microcentrifuge (Thermo IEC, Needham Heights, Massachusetts, USA). After that, the supernatant fluid was aspirated, placed in a labelled eppendorf tube and stored in a cryobox in a -20°C freezer until further analyses were carried out.

F. Evidence Investigator Cytokine Array

Supernatant fluid stored at -20°C was removed from the freezer and kept at room temperature to thaw for approximately 1 h before it was assayed for the cytokine concentrations using an Evidence Investigator[™] cytokine and growth factors array kit (Randox, County Antrim, UK). Briefly, 200 µl of assay buffer and 100 µl of standard or sample were added to each well of the carrier. Then, for 60 min, it was incubated at 37°C at 370 rpm on the thermoshaker (Randox, County Antrim, UK). This allowed the cytokines present in the sample to bind to the immobilised antibodies bound to the base of each carriers’ well. After that, the liquid from each well was decanted and washed by performing two quick washes and four 2-min soaks, followed by decanting the liquid and tapping the carrier onto lint free tissue paper.

Next, 300 µl of conjugate was added to each well and incubated at 37°C at 370 rpm on the thermoshaker for 60 min. The wells were then washed as previously described before 250 µl of signal reagent (a mixture of luminol and peroxide) were added to each well followed by 2-min incubation in the dark. Finally, it was analysed by using the Evidence Investigator machine (Randox, County Antrim, UK). The intra-assay coefficient of variation for all measured cytokines was less than 5.0%.

G. Data Analysis

Data were analysed using the Statistical Package for Social Sciences (SPSS) version 17 (SPSS Inc., USA). Descriptive analysis was used to measure mean and standard deviation (SD). Statistical significance of differences between means was analysed using paired samples t-test. All the data were expressed as mean ± SD.
Table II presents the values of haematological parameters measured. The entire observed values fell within the normal range. This indicates that the participants recruited for the study were healthy and have no obvious haematological problem.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Observed values</th>
<th>Normal range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red blood cells (10^6/L)</td>
<td>4.9 ± 0.4</td>
<td>4.3 – 6.2</td>
</tr>
<tr>
<td>Haemoglobin (g/dL)</td>
<td>14.7 ± 1.4</td>
<td>13.2 – 16.2</td>
</tr>
<tr>
<td>Haematocrit (%)</td>
<td>47.3 ± 4.1</td>
<td>40.0 – 52.0</td>
</tr>
<tr>
<td>White blood cells (10^9/L)</td>
<td>5.1 ± 0.6</td>
<td>4.0 – 11.0</td>
</tr>
<tr>
<td>Neutrophils (10^9/L)</td>
<td>2.3 ± 0.5</td>
<td>2.0 – 8.0</td>
</tr>
<tr>
<td>Lymphocytes (10^9/L)</td>
<td>1.9 ± 0.2</td>
<td>0.7 – 4.4</td>
</tr>
<tr>
<td>Monocytes (10^9/L)</td>
<td>0.5 ± 0.2</td>
<td>0.1 – 0.8</td>
</tr>
<tr>
<td>Eosinophils (10^9/L)</td>
<td>0.2 ± 0.9</td>
<td>0.1 – 0.4</td>
</tr>
<tr>
<td>Basophils (10^9/L)</td>
<td>0.0 ± 0.0</td>
<td>0.0 – 0.1</td>
</tr>
</tbody>
</table>

Table III shows the concentrations of the cytokines produced in the whole blood culture after 20 h incubation with the vaccine dose 5 and immunomodulators at high or low dose. Control refers to the whole blood cultured with only vaccine without any added immunomodulators.

IV. DISCUSSION

In general, we found that caffeine and quercetin showed a tendency towards decreased cytokine production as the doses were increased (Table III). On the other hand, an upward trend was evident with kaloba, where a high dose of kaloba seemed to increase the cytokine production.

There were no significant differences (compared with control) in cytokine production in response to caffeine and quercetin with low or high dose (Table III). However, the results showed a tendency towards reduced cytokine production with high doses of both caffeine and quercetin. Previous studies have found that caffeine and quercetin act as immunosuppressants [4]-[7]. Thus, this finding is not in contradiction to those previous findings.

The potential mechanism of action for the anti-inflammatory action of quercetin (blocked TNF-α mediated inflammation or insulin resistance in adipocytes) are proposed by interfering with TNF-α receptor (TNFR) binding, suppressing TNF-α–TNFR signalling, and altering the activity of proteins involved in inflammation or glucose and lipid metabolism [7]. Quercetin also was proposed to exert its effects in inflammation prevention and insulin resistance via inhibition of TNF-α mediated reactive oxygen species (ROS - increase inflammatory gene expression) production [24]. We found no significant differences in cytokine production in response to kaloba in this study. Nevertheless, there was an evident upward trend of kaloba on cytokine production (Table III) where a high dose of kaloba seemed to increase the cytokine production. This is in agreement with previous findings which suggested kaloba as an immunostimulant [8], [9].

Kaloba was reported to have multifactorial mode of action; antiviral and cytotoxic properties, antibacterial properties, secretomotoric properties and inhibition of ‘sickness behaviour’. Several in vitro studies found that kaloba triggers stimulation of IFN synthesis [9], [25] and improves phagocyte function [20]. It also increased the ciliary beat frequency, thus increasing the transportation of mucous and pathogen from the respiratory tracts. This in turn reduced pathogen count, removed the nutrient medium for their subsequent proliferation and substantially improved respiration [26].

In addition, it is should be noted that in vitro and in vivo studies might give different result outcomes due to some limitations. These include poor bioavailability of the nutritional compounds in the body fluids and tissues due to poor absorption and distribution of the compounds following oral ingestion in the in vivo situation. Furthermore, in vivo some nutrients may be metabolised and inactivated by gut epithelial cells and the liver or rapidly cleared from the circulation by the kidneys.

V. CONCLUSION

There were no significant differences in the production of IL-2, IL-4, IL-10, IFN-γ, and IL-1α in antigen-stimulated...
whole blood culture in the presence of the selected immunomodulators. Nevertheless, we found that caffeine and quercetin have potential as immunosuppressants and Kaloba as immunostimulant.

ACKNOWLEDGMENT

We would like to acknowledge all the participants involved in this study for their co-operation and kindness.

REFERENCES

