Laboratory Testing Regime for Quantifying Soil Collapsibility
Anne C. Okwedadi, Samson Ng’ambi, Ian Jefferson

Abstract—Collapsible soils go through radical rearrangement of their particles when triggered by water, stress or/and vibration, causing loss of volume. This loss of volume in soil as seen in foundation failures has caused millions of dollars’ worth of damages to public facilities and infrastructure and so has an adverse effect on the society and people. Despite these consequences and the several studies that are available, more research is still required in the study of soil collapsibility. Discerning the pedogenesis (formation) of soils and investigating the combined effects of the different geological soil properties is key to elucidating and quantifying soils collapsibility. This study presents a novel laboratory testing regime that would be undertaken on soil samples where the effects of soil type, compactive variables (moisture content, density, void ratio, degree of saturation) and loading are analyzed. It is anticipated that results obtained would be useful in mapping the trend of the combined effect thus the basis for evaluating soil collapsibility or collapse potentials encountered in construction with volume loss problems attributed to collapse.

Keywords—Collapsible soil, Geomorphological process, Soil Collapsibility properties, Soil test.

I. INTRODUCTION

Collapsible soil, which cover naturally over 10% of the earth’s surface, are a global problem [1], [2]. They are open unsaturated soils that collapse suddenly when wetted under loading. Collapse is induced by reduction in volume which causes differential settlement of buildings as seen in foundation failures costing millions of dollars’ worth of damages to public facilities and infrastructure. Sinkholes and Seismic activities also can induce collapse.

A lot of past studies on collapsible soils have focused on understanding the existence, description, classification, structural make up and the state factors that influence the collapse mechanism of collapsible soils. However, lacking in knowledge among others is a model in the form of a ‘guide’ where the key geological parameters such as particle type (size, percentage and atterberg limits), dry density, moisture content, degree of saturation, overburden pressure, and stress-strain and the limit that make them collapsible are presented. A table guide would make geological behavioral identification of a collapsible soil simplified for sites. This paper intends to suggest a methodology on how this gap can be filled. To accomplish this, first the geomorphological processes (pedogenesis) of collapsible soils is studied, the effects of the different geological soil properties on collapsibility are investigated and finally a step by step methodology on how a geological model for identifying collapsible soil is proposed.

II. LITERATURE ON SOIL COLLAPSIBILITY
A. General

Collapsible soils are typically of silt and fine sand sizes with a small amount of clay; its pedogenesis is via dry alluvial (water) fan, colluviums (gravity) and aeolian (wind-blown) deposits. They are porous soil structures that show relatively high apparent strength (cohesion) in their dry state, have low density, and are susceptible to large settlement upon wetting. Severity of collapse is affected by the extent of wetting, depth of the collapsible soil deposit, the pressure from overburden weights (e.g. structure) and the collapse potential of the soil [1]–[7].

Some criteria for identifying collapsible soils have been described as having low density, high porosity (more than 40%) and low saturation (less than 60%); open partially unstable structure and unsaturated fabric; high silt content (more than 30% and sometimes more than 90%) and sand size with a small amount of clay [5], [8]–[14]. In addition, all fills are collapsible until proven otherwise [15]; local site geology, depositional processes and also climatological data show probability of collapsibility of the soil mass.

The collapse potential is affected by the nature and type of the soil particle and the sedimentation mechanism, which combine to produce collapsibility. Collapsible soils are seen as stable until there is a triggering event that turns them unstable causing collapse [9]; hence, they are best described as metastable structured soils. Soil collapsibility is brought about by changes in state parameter of the open structured soil into a densely structured soil.

Reference [16] states that the differential settlements are instigated by shear failure from pressures transcending the soil’s critical pressure and also by hydro-collapse from soil inundation which impels loss of the soil’s cementation bonds (clay bond or chemical bond) or loss of matric suction. This behavior can be of great challenge to the developer, designer and engineer in charge of such site, mostly when it has not been anticipated for at the design and construction stages. This makes it much more important that prior to construction, determination and identification of collapse potential of a soil is imperative.

Soil state parameters that affect the collapse intensity of the
soil are soil collapse potential, initial water content, initial dry density, pressure at wetting, extent of wetting and wetting front, atterberg limits, coefficient of uniformity, coefficient of curvature and depth of the deposit. [8], [12], [17]–[20].

B. Geomorphological Processes

Loess which is a wind deposit collapsible soil is the most widely distributed collapsible soil [2], [21], most encountered [22] and most researched; therefore loess formation would be used in the description of the geomorphological processes.

The origin of deposition formation of loess soils is from several different deposit formations which involve eluvial, proluvial, diluvial, alluvial and aeolian; but the worldwide paradigm theory is that of only aeolian deposition formation [23].

Loess was first formed when glaciers covered the earth; the warm temperatures melted the glaciers creating flows of water down into valleys or rivers. The fluvial transportation from the piedmont region and out into the desert exposed the mud; when dried, strong winds blew the exposed debris and gathered the finer materials from the flood plains into huge clouds of dust, which were deposited into banks forming higher piles of loess. With each individual glacier deposit and post-deposition a palaeosol of loess soil is produced [21], [23].

C. Geological Properties

Geological properties of soils give it the structural durability, mechanical ability and general stability. Collapsible soils particles are kept from forming closer packing naturally due to the geomorphological process forming clay bridge, carbonates and gypsums bonds [9]. These soils are unsaturated and of low degree of saturation. The soils are stable through the geomorphological process forming clay bridge, soils particles are kept from forming closer packing naturally [9].

D. Collapsibility Correlation

Several researchers have classified soil collapsibility; each one based their criteria on different parameters. The parameters can be looked at in four categories: atterberg with soil properties parameters; void ratios of the soil; numerical limits and graph presentation.

1) ‘Atterberg with Soil Properties Parameters’ Category, for Collapse

Equations (1)–(5) give the parameters in this category:

\[
\frac{W_0}{L_L}\text{Sr} - 1 > 1 \quad (1)
\]
\[
\frac{W_0}{L_L}\text{Sr} - 1 < 1 \quad (2)
\]
\[
\frac{W_0}{L_L}\text{Sr} - 1 < 0.5 \quad (3)
\]
\[
\frac{W_0}{L_L}\text{Sr} - 1 > 0.85 \quad (4)
\]
\[
\frac{W_0}{L_L}\text{Sr} - 1 \geq 1 \quad (5)
\]

where:

\(W_0\) – Initial moisture content
\(W_{\text{max}}\) – Maximum moisture content
\(L_L\) – Liquid limit
\(P_L\) – Plastic limit
\(Sr\) – Degree of saturation
\(Sr_0\) – Initial degree of saturation
\(\gamma_a\) – Unit weight of water
\(\gamma_d\) – Dry unit weight of water
\(Gs\) – Specific gravity

2) Soil’s Void Rations’ Category, for Collapse

Reference [31] used stress level of 300 kPa while, [32] recommended the use of 200 kPa [33] for testing the collapse potential of a soil. However [31], [32], [34] have (6):

\[
\frac{\Delta e}{e_0} + 1\% = C \quad (6)
\]

for which C is 2%, 6% and 10% respectively. Others are [26], [35] seen in (7) and (8) respectively.

\[
\frac{e_0}{e_0} < 1 \quad (7)
\]
\[
\frac{e_0 - e_i}{1 + e_i} > -0.1 \quad (8)
\]

where:

\(e_0\) – Void ratio at initial moisture content
\(e_i\) – Void ratio at the liquid limit
\(\Delta e\) - Void ratio reduction

3) ‘Numerical Limits’ Category

This category has the following:

- Dry density is less than 1.28Mg/m³, [36]
- Critical pressure is less than 0.15MPa, [37]
- Clay content is less than 16%, [30]

4) Graphs Presentation

References [29], [38] represent graph of dry density against liquid limit of which at 25% liquid limit, the soil is collapsible; defined a relationship in a graph of dry density against liquid limits show in Fig. 1.
content condition and at low dry density. This condition forms a structure which is capable of further densification, resulting in a collapsible soil [3], [43].

IV. METHODOLOGY

To overcome the challenges of sampling undisturbed soils, metastable structured soil are synthesized in the lab and tested to simulate the behavioral properties of the field collapsible soils.

Factors that affect the collapse intensity of a soil would be studied; which include the soil’s fabric (size and nature of the soil’s grains), compactive variable (such as density, matric suction, degree of saturation, void ratio, water content) and loading. These factors would be observed to understand the role each plays in the stability of the soil structure concerning the mechanism of collapse.

The relationship between soil fabric and state-parameters that make the soil metastable would be incorporated in the preparation, observation and study of collapsible soils. The result is then used in identifying the controlling effects collapsibility has on a soil structure. Fig. 2 shows the methodology summary.

A. Preliminary Steps

‘Preliminary steps’ comprises of testing the soils for their geological properties such as soil fabrics, maximum dry density (MDD), optimum moisture content (OMC) and degree of saturation (Sr) at the MDD, to note their effect on the soil’s collapse potential when the structural properties are reconditioned.

1) Soil Classification and Property Identification

Several acquired soils from different sites are tested to identify and classify their properties. Laboratory tests carried out to identify the state parameters of the soil structure are: Sieve analysis and sedimentation test to identify the soil’s fabric makeup and Atterberg and compaction for classification.

Soil Preparation: The obtained samples are dried in the oven for at least 24 hours and then fines are grinded to their original particle sizes.

Identification tests: Dry sieve analysis and sedimentary test are executed on the soil samples to identify the particle size...
distribution. Atterberg limit test is conducted to specify the characteristics of the fines and obtain values for liquid limit and plastic limits of the soils.

Finally, mechanical properties of the different soils are tested for the MDD and OMC using the standard proctor compaction test.

The aim of these tests ultimately is to find the critical point at which the key parameters that make the soil stable lose their strength.

2) Metastable Soils

The acquired soils are tested and retested to get the suitable properties required for the purpose of collapsibility, hence the problem of liquefaction cannot be studied herein since continuous wetting and drying will have removed any chemicals the soil would have to cause such effect. The plan is to prepare specimens for testing and analysis of their physical and mechanical properties, from which to ascertain their collapse potential as a structure. The plasticity indexes of the soils are particularly important in the fabric bonding of the soil particles and stability of the soil structure.

B. Effect of Soil Properties on Soil Collapsibility

At this stage the optimum performances of each soil would have been identified. The next step is to vary and change the soils’ geological structure to note their effect on the collapse potential of the soil. To achieve this, specimens are prepared and tested to acquire a metastable structured soil by observing the following factors: Soil fabric: Particle size distribution (PSD) and plasticity of the soil; Compactive Variable: Initial moisture content, initial dry density, degree of saturation and void ratio; and Critical pressure.

Varying the degrees of these factors produces a range of different soil structure which is tested to reveal their effect on the soil’s collapsibility. The triaxial test is used with the aim of obtaining a quick measurement of the soils shear strength; double oedometer test is done to check the collapse potential of the prepared soil sample; and finally a modified uniaxial setup is used for a proper mix of state parameters forming metastable structure soil to replicate what happens in the field.

1) Soil Type

Soil fabric plays a fundamental role in soil structural demeanor, which is influenced mainly by the particle size distribution (PSD) and plasticity of the soil’s fabric. Samples are prepared at their best performance i.e. compacted at their optimum moisture content. The stress-strain parameters and consolidation properties are obtained using triaxial test and double oedometer test respectively. Finally the effect of wetting is tested and scrutinized to examine the effect on the soil’s collapsibility.

2) Compactive Variable

Water content plays a huge role in acquiring the maximum dry density during compaction. For this reason, the moisture content (MC) is varied at a percentage of the soil’s optimum moisture contents (OMC) as shown in Table II. These forms the initial moisture content of the soil and the initial dry density is obtained from the compaction of the mixed samples. These give a series of structurally different soils which are investigated to note their effect on collapsibility. The degree of saturation and the void ratio at these percentages of MC are also noted as they are of importance to collapsibility.

<table>
<thead>
<tr>
<th>Moisture rate</th>
<th>Percentage range from optimum moisture content (OMC) of the fabric mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry OMC</td>
<td>60% - 75% of OMC</td>
</tr>
<tr>
<td>At OMC</td>
<td>85% - 110% of OMC</td>
</tr>
<tr>
<td>Above OMC</td>
<td>130% - 150% of OMC</td>
</tr>
</tbody>
</table>

3) Critical Load

The prepared sample is loaded at different stress levels to identify the critical pressure. Using a double oedometer test method, the critical loading is surveyed at pressures, 50kPa, 100kPa, 200kPa and 300kPa. Results obtained from these tests would be presented in a series of graph curves of collapse verses compactive variables for the loading pressure of each soil type, from this critical points for which a soil is termed collapsible is drawn.

4) Testing Method

Triaxial and oedometer tests are the main testing methods used. For saturation of the samples, they are placed in the oedometer cell surrounded with water after preparation. They are kept this way for 24 hrs.

C. Quantifying Collapsibility Based on Past Studies

The factors that affect the stability of the soil have been drawn out at this point of the investigation. The results are compared against results obtained from past studies on collapsibility of soil (see Subchapter II.D aboveII.D). Conclusions drawn are then used for the synthesized soil structure to check how the dominant factors affecting metastability of the soil interact. The results are further compared with [18] which give the field results of collapsible soil.

D. Full Observation of Collapsibility

The parameters that make a soil structure collapsible are compacted into layers of metastable soil structures where the metastable soils (gathered from general findings) are tested to see the potential, pattern and extent of collapse. Hence a relationship is drawn between the soil fabric, soil structure, critical loading and wetting of a metastable soil.

1) The Mould Specifications

Fig. 3 shows the schematic diagram of the full mould design and features for a uniaxial loading and wetting test sequence test. The mould has the following specifications:

- Full dimensions: 200mm × 400mm × 600mm height
- Detachable: one for sampling and the other for the loading and wetting test.
- Calibrated and made of a 12mm thick transparent acrylic or perspex material.
- Has two sharp thin sheets of 10 and 5mm thickness used to cut through the compacted layers to separate the
sampling soils and the loading/wetting soils, after which the sampling section of the mould is removed and the loading/wetting side of the mould is made air tight with the 10mm sheet as wall and glued on to prevent leakage during soil inundation.

The geomorphological processes combined with geological behavior and properties of collapsible soils have been explained. Also the laboratory test processes that are necessary to harness the key factors have been documented. The laboratory tests propose the investigation into the effects of soil type, compactive variables, and critical load to soil collapsibility.

Experimental works on different soils following the methodology should be executed.

REFERENCES

