Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29705


Select areas to restrict search in scientific publication database:
10010239
Evaluation of Non-Staggered Body-Fitted Grid Based Solution Method in Application to Supercritical Fluid Flows
Abstract:
The efforts to understand the heat transfer behavior of supercritical water in supercritical water cooled reactor (SCWR) are ongoing worldwide to fulfill the future energy demand. The higher thermal efficiency of these reactors compared to a conventional nuclear reactor is one of the driving forces for attracting the attention of nuclear scientists. In this work, a solution procedure has been described for solving supercritical fluid flow problems in complex geometries. The solution procedure is based on non-staggered grid. All governing equations are discretized by finite volume method (FVM) in curvilinear coordinate system. Convective terms are discretized by first-order upwind scheme and central difference approximation has been used to discretize the diffusive parts. k-ε turbulence model with standard wall function has been employed. SIMPLE solution procedure has been implemented for the curvilinear coordinate system. Based on this solution method, 3-D Computational Fluid Dynamics (CFD) code has been developed. In order to demonstrate the capability of this CFD code in supercritical fluid flows, heat transfer to supercritical water in circular tubes has been considered as a test problem. Results obtained by code have been compared with experimental results reported in literature.
Digital Object Identifier (DOI):

References:

[1] GEN IV International Forum, 2007. GIF R&D Outlook for Generation IV Nuclear Energy Systems.
[2] Igor L. Pioro, Hussam F. Khartabil, Romney B. Duffey, “Heat transfer to supercritical fluids flowing in channels-empirical correlations (survey)”, Nuclear Engineering and Design 230 (2004) 69-91.
[3] Igor L. Pioro, Romney B. Duffey, “Experimental heat transfer in supercritical water flowing inside channels (survey)”, Nuclear Engineering and Design 235 (2005) 2407-2430.
[4] X. Cheng, T.Schulenberg, “Heat transfer at supercritical pressures: literature review and application to an HPLWR” Wissenschaftliche Berichte, FZKA 6609, Forschungszentrum Karlsruhe (2001).
[5] A. Yamaji, K. Kamei, Y. Oka, S. Koshizuka, “Improved core design of the high temperature supercritical-pressure light water reactor”, Annals of Nuclear Energy 32 (2005) 651-670.
[6] T. Schulenberg, J. Starflinger, J. Heinecke, “Three pass core design proposal for a high performance light water reactor”, Progress in Nuclear Energy 50 (2008) 526-531.
[7] K. Yamagata, K. Nishmawa, S. Hasegawa, T. Fuji, S. Yoshida, “Forced convective heat transfer to supercritical water flowing in tubes”, International Journal of Heat and Mass Transfer 15 (1972) 2575-2593.
[8] M. Zhao, H. Y. Gu, X. Cheng, “Experimental study on heat transfer of supercritical water flowing downward in circular tubes”, Annals of Nuclear Energy 63 (2014) 339-349.
[9] Siyu Zhanga, Hanyang Gua, Xu Chenga, Zhenqin Xiong, “Experimental study on heat transfer of supercritical Freon flowing upward in a circular tube”, Nuclear Engineering Design 280 (2014) 305-315.
[10] Hodeo Mori, Takenobu Kaida, Masaki Ohno, Suguru Yoshida, Yoshinori Hamamoto, “Heat transfer to supercritical pressure fluid flowing in sub-bundle channels”, Journal of Nuclear Science and Technology 49 (2012) 373-383.
[11] Yina Zhang, Chao Zhang, Jin Jiang, “Numerical simulation of heat transfer of supercritical fluids in circular tubes using different turbulence models”, Journal of Nuclear Science and Technology 48 (2011) 366-373.
[12] Maria Jaromin, Henryk Anglart, “A numerical study of heat transfer to supercritical water flowing upward in vertical tubes under normal and deteriorated conditions”, Nuclear Engineering Design 264 (2013) 61-70.
[13] Q. L. Wen, H. Y. Gu, “Numerical simulation of heat transfer deterioration phenomenon in supercritical water through vertical tube”, Annals of Nuclear Energy 37 (2010) 1272-1280.
[14] Karki, K. C. and Patankar, S. V., Calculation Procedure for Viscous Incompressible Flows in Complex Geometries, Numerical Heat Transfer, vol. 14, pp. 295-307, 1988a.
[15] Melaaen, M. C., Calculation of Fluid Flows With Staggered and Nonstaggered Curvilinear Nonorthogonal Grids - The Theory, Numerical Heat Transfer, Part B, vol. 21, pp. 1-19, 1992a.
[16] Shyy, W., Tong, S. S. and Correa, S. M., Numerical Recirculating Flow Calculation Using a Body-Fitted Coordinate System, Numerical Heat Transfer, vol. 8, pp. 99-113, 1985.
[17] Acharya, S. and Moukalled, F. H., Improvements to Incompressible Flow Calculation on a Nonstaggered Curvilinear Grid, Numerical Heat Transfer, Part B, vol. 15, pp. 131-152, 1989.
[18] Choi, S. K. and Nam, H. Y., Use of the Momentum Interpolation Method for Numerical Solution of Incompressible Flows in Complex Geometries: Choosing Cell Face Velocities, Numerical Heat Transfer, Part B, vol. 23, pp. 21-41, 1993.
[19] Rhie, C. M. and Chow, W. L., Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation, AIAA Journal, vol. 21, pp. 1525-1535, 1983.
[20] Launder B. E., Spalding D. B., The numerical computation of turbulent flows, Computational Methods in Applied Mechanics and Engineering, vol. 3, pp. 269-289, 1974.
Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007