Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29912


Select areas to restrict search in scientific publication database:
14449
Porous Effect on Heat Transfer of Non Uniform Velocity Inlet Flow Using LBM
Abstract:
A numerical study of flow in a horizontally channel partially filled with a porous screen with non-uniform inlet has been performed by lattice Boltzmann method (LBM). The flow in porous layer has been simulated by the Brinkman-Forchheimer model. Numerical solutions have been obtained for variable porosity models and the effects of Darcy number and porosity have been studied in detail. It is found that the flow stabilization is reliant on the Darcy number. Also the results show that the stabilization of flow field and heat transfer is depended to Darcy number. Distribution of stream field becomes more stable by decreasing Darcy number. Results illustrate that the effect of variable porosity is significant just in the region of the solid boundary. In addition, difference between constant and variable porosity models is decreased by decreasing the Darcy number.
Digital Object Identifier (DOI):

References:

[1] D. Poulikakos, M. Kazmierczak, "Forced convection in a duct partially filled with a porous material", ASME Journal of Heat Transfer,vol. 109, 1987,pp. 653-662.
[2] Z. Guo, S.Y. Kim, H. J. Sung, "Pulsating flow and heat transfer in a pipe partially filled with a porous medium", International Journal of Heat and Mass Transfer , vol.40, 1997, pp. 4209-4218.
[3] M. O. Hamdan, M. A. Al-Nimr, M. K. Alkam, "Enhancing forced convection by inserting porous substrate in the core of a parallel-plate channel", International Journal of Numerical Methods Heat & Fluid Flow, vol. 10, 2000, pp. 502-517.
[4] M. K. Alkam, M. A. Al-Nimr, M.O. Hamdan, "on forced convection in channel partially filled substrate", Heat and Mass Transfer, vol. 38, 2002, pp.337-342.
[5] P. X. Jiang, M. Li, Y. C. Ma, Z. P. Ren, "Boundary conditions and wall effect for forced convection heat transfer in sintered porous plate channels", International Journal Heat Mass Transfer, vol. 47, 2004, pp. 2073-2083.
[6] T. C. Jen, T. Z. Yan, "Developing fluid flow and heat transfer in a channel partially filled with porous medium", International Journal Heat Mass Transfer, vol. 48, 2005, pp. 3995-4009.
[7] M. F. Liou, "A Numerical study of transport phenomena in porous media", PhD thesis, University of Case Western Reserve, Cleveland, 2005.
[8] V. V. Satyamurty, D. Bhargavi, "Forced convection in thermally developing region of a channel partially filled with a porous material and optimal porous fraction", International Journal Thermal Science, vol. 49, 2010, pp. 319-332.
[9] C. M. Subhash, M. Bittagopal, K. Tanuj, B. S. R. Krishna, "Solving transient heat conduction problems on uniform and non-uniform lattices using the lattice Boltzmann method", International Communications in Heat and Mass Transfer, vol. 36, 2009, pp. 322-328.
[10] P. H. Kao, R. J. Yang, "An investigation into curved and moving boundary treatments in the lattice Boltzmann method", Journal of Computational Physics, vol.27, 2008, pp. 5671-5690 .
[11] M. A. Delavar, M. Farhadi, K. Sedighi,"Effect of the Heater Location on Heat Transfer and Entropy Generation in the Cavity Using the Lattice Boltzmann Method", Heat Transfer Research, vol. 40, 2009, pp. 521- 536.
[12] H. Nemati, M. Farhadi, K. Sedighi, E. Fattahi, A.A.R. Darzi, "Lattice Boltzmann simulation of nanofluid in lid-driven cavity", Accepted for publication)," International Communications in Heat and Mass Transfe., to be published.
[13] D. A. Nield, A. Bejan, Convection in Porous Media, third ed., New York: Springer-Verlag, 2006, ch. 1-2.
[14] O. Dardis, J. McCloskey, "Lattice Boltzmann scheme with real numbered solid density for the simulation of flow in porous media", Physics Review E, vol. 57, 1998, pp. 4834-4837.
[15] M. A. A. Spaid, F. R. Phelan, "Lattice Boltzmann methods for modeling micro scale flow in fibrous porous media", Physics of Fluids, vol. 9, 1997, pp. 2468-2474.
[16] S. J. Kim, K. Vafai, "Analysis of natural convection about a vertical plate embedded in a porous medium", International Journal Heat Mass Transfer, vol. 32, 1989, pp. 665-677.
[17] Z. Guo, T. S. Zhao, "Lattice Boltzmann model for incompressible flows through porous media", Physics Review E, vol. 66, 2002, pp. 304-309.
[18] M. D. Mantlea, B. Bijeljicb, A. J. Sederman, L. F. Gladdena, "MRI velocimetry and lattice Boltzmann simulations of viscous flow of a Newtonian liquid through a dual porosity fibre array", Magnetic Resonance Imaging, vol. 19, 2001, pp.527-529.
[19] M. Kaviany, "Laminar flow through a porous channel bounded by isothermal parallel plates", International Journal Heat and Mass Transfer, vol. 28, 1985, pp. 851-858.
[20] T. Seta, E. Takegoshi, K. Kitano, K. Okui, "Thermal Lattice Boltzmann Model for Incompressible Flows through Porous Media", Journal of Thermal Science and Technology, vol. 1, 2006, pp. 90-100.
[21] A. A. Mohamad, Applied lattice Boltzmann method for transport phenomena, momentum, heat and mass transfer, Calgary: Sure Printing, 2007, ch. 2.
[22] P. Cheng, A. Chowdhury, C. T. Hsu,"Forced Convection in Packed Tubes and Channels with Variable Porosity and Thermal Dispersion Effects", Convective Heat Mass Transfer in Porous Media, vol. 35, 1991, pp. 625-653.
Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007