Open Science Research Excellence
@article{(International Science Index):,
  title    = {Lexical Based Method for Opinion Detection on Tripadvisor Collection},
  author    = {Faiza Belbachir and  Thibault Schienhinski},
  country   = {France},
  institution={Institut Polytechnique des Sciences Avancées},
  abstract  = {The massive development of online social networks
allows users to post and share their opinions on various topics.
With this huge volume of opinion, it is interesting to extract and
interpret these information for different domains, e.g., product and
service benchmarking, politic, system of recommendation. This is
why opinion detection is one of the most important research tasks.
It consists on differentiating between opinion data and factual data.
The difficulty of this task is to determine an approach which returns
opinionated document. Generally, there are two approaches used
for opinion detection i.e. Lexical based approaches and Machine
Learning based approaches. In Lexical based approaches, a dictionary
of sentimental words is used, words are associated with weights. The
opinion score of document is derived by the occurrence of words from
this dictionary. In Machine learning approaches, usually a classifier
is trained using a set of annotated document containing sentiment,
and features such as n-grams of words, part-of-speech tags, and
logical forms. Majority of these works are based on documents text
to determine opinion score but dont take into account if these texts
are really correct. Thus, it is interesting to exploit other information
to improve opinion detection. In our work, we will develop a new
way to consider the opinion score. We introduce the notion of
trust score. We determine opinionated documents but also if these
opinions are really trustable information in relation with topics. For
that we use lexical SentiWordNet to calculate opinion and trust
scores, we compute different features about users like (numbers of
their comments, numbers of their useful comments, Average useful
review). After that, we combine opinion score and trust score to
obtain a final score. We applied our method to detect trust opinions in
TRIPADVISOR collection. Our experimental results report that the
combination between opinion score and trust score improves opinion
  {International Journal of Information and Communication Engineering },  volume    = {12},
  number    = {8},
  year      = {2018},
  pages     = {644 - 648},
  ee        = {},
  url       = {},
  bibsource = {},
  issn      = {eISSN:1307-6892},
  publisher = {World Academy of Science, Engineering and Technology},
  index     = {International Science Index 140, 2018},