References:
[1] Beebe, R. S. (2004) Predictive maintenance of pumps using condition monitoring Elsevier advanced technology.
[2] Mckee, K. K., Forbes, G., Mazhar, I., Entwistle, R. & Howard, I. (2011) A review of major centrifugal pump failure modes with application to the water supply and sewerage industries. ICOMS Asset Management Conference. Gold Coast, QLD, Australia, Asset Management Council.
[3] Rao, B. K. N. (Ed.) (1996) Handbook of condition monitoring, Elsevier advanced technology.
[4] Bendjama, H., Gherfi, K., Idiou, D. & Boucherit, M. S. (2014) Condition monitoring of rotating machinery by vibration signal processing methods. International Conference on Industrial Engineering and Manufacturing. Batna University Algeria.
[5] Aherwar, A. & Khalid, M. S. (2012) Vibration Analysis Techniques for Gearbox Diagnostic: a Review. International Journal of Advanced Engineering Technology, 3.
[6] Al-Tubi, M. A. S. & Al-Raheem, K. F. (2010) Rolling element bearing faults detection, a time domain analysis. Caledonian Journal of Engineering, 6.
[7] Al-Tubi, M. A. S., Al-Raheem, K. F. & Abdul-Karem, W. (2012) Rolling element bearing element faults detection, power spectrum and envelope analysis. International conference on applications and design in mechanical engineering. Penang, Malaysia.
[8] Mehala, N. & Dahiya, R. (2008) A Comparative Study of FFT, STFT and Wavelet Techniques for Induction Machine Fault Diagnostic Analysis. International conference of computational intelligence, man-machine systems cybernetics (CIMMACS '08). India.
[9] Prakash, A., Agarwal, V. K., Kumar, A. & Nand, B. (2014) A review on machine condition monitoring and fault diagnostics using wavelet transform. International Journal of Engineering Technology, Management and Applied Sciences, 2, 84-93.
[10] Peng, Z. K. & Chu, F. L. (2004) Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography. Mechanical Systems and Signal Processing, 18, 199-221.
[11] Al-Tubi, M. A. S. & Al-Raheem, K. F. (2015) Rotor misalignment and imbalance detection using wavelet and neural network techniques. Scottish Journal of arts, social sciences and scientific studies, 24, 33-44.
[12] Muralidharan, V., Sugumaran, V. & Indira, V. (2014) Fault diagnosis of monoblock centrifugal pump using SVM. Engineering Science and Technology, an International Journal, 17, 152e157.
[13] Yan, R., Gao, R. X. & Chen, X. (2014) Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Processing, 96, 1-15.
[14] Farokhzad, S. (2013) Vibration based fault detection of centrifugal pump by fast fourier transform and adaptive neuro-fuzzy inference system. Journal of mechanical engineering and technology, 1, 82-87.
[15] Rajakarunakaran, S., Venkumar, P., Devaraj, D. & Rao, K. S. P. (2008) Artificial neural network approach for fault detection in rotary system. Applied Soft Computing, 8, 740–748.
[16] Sakthivel, N. R., Nair, B. B., Elangovan, M., Sugumaran, V. & Saravanmurugan, S. (2014) Comparison of dimensionality reduction techniques for the fault diagnosis of mono block centrifugal pump using vibration signals. Engineering Science and Technology, an International Journal 17, 30-38.
[17] Charniak, E. & Mcdermott, D. (2000) Introduction to artificial intelligence, addison wesley Longman Inc.
[18] Mcculloch, W. S. & Pitts, W. (1943) A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115-133.
[19] Zadeh, L. A. (1965) Fuzzy Sets. Information and Control, 8, 338-353.
[20] Sakthivel, N. R., V. Sugumaran & B.NAIR, B. (2012) Automatic rule learning using roughset for fuzzy classifier in fault categorization of mono-block centrifugal pump. Applied Soft Computing, 12, 196–203.
[21] Sakthivel, N. R., Binoy. B. Nair & V. Sugumaran (2012) Soft computing approach to fault diagnosis of centrifugal pump. Applied Soft Computing, 12, 1574–1581.
[22] Saberi, M., Azadeh, A., Nourmohammadzadeh, A. & Pazhoheshfar, P. (2011) Comparing performance and robustness of SVM and ANN for fault diagnosis in a centrifugal pump. 19th International Congress on Modelling and Simulation. Perth, Australia.
[23] Nasiri, M. R., Mahjoob, M. J. & Vahid-Alizadeh, H. (2011) Vibartion signature analysis for detecting cavitation in centrifugal pump using neural networks. IEEE international conference on mechatronics (ICM). Istanbul, Turkey, IEEE.
[24] Farokhzad, S., Ahmadi, H. & Jafary, A. (2013) FAULT Classification of Centrifugal Water Pump Based on Decision TREE and Regression Model. Journal of Science and today's world, 2, 170-176.
[25] Farokhzad, S., Ahmadi, H. & Jaefari, A. (2012) Artificial Neural Network Based Classification of Faults in Centrifugal Water Pump. Journal Vibroengineering 14.
[26] Muralidharan, V. & Sugumaran, V. (2013) Selection of Discrete Wavelets for Fault Diagnosis of Monoblock Centrifugal Pump Using the J48 Algorithm. Applied Artificial Intelligence, 27.
[27] Wang, H. & Chen, P. (2007) Intelligent Method for Condition Diagnosis of Pump System Using Discrete Wavelet Transform, Rough Sets and Neural Network. Second international Conference on Bio-inspired computing: theories and applications, 2007. Zhengzhou, IEEE.
[28] Muralidharan, V., Sugumaran, V., Shanmugam, P. & Sivanathan, K. (2010) Artifical neural network based classification for monoblock centrifugal pump using wavelet analysis. International journal of mechanical engineering, 1, 28-37.
[29] Iiott, P. W. & Griffiths, A. J. (1997) Fault diagnosis of pumping machinery using artificial neural networks. Journal of Process Mechanical Engineering, 211, 185-194.
[30] Zouari, R., Sieg-Zieba, S. & SIDAHMED, M. (2004) Fault detection system for centrifugal pumps using neural networks and neuro-fuzzy techniques. Surveillance 5 CETIM Senlis.
[31] Song, L., Chen, P. & Wang, H. (2014) Automatic Decision Method of Optimum Symptom Parameters and Frequency Bands for Intelligent Machinery Diagnosis: Application to Condition Diagnosis of Centrifugal Pump System. Advances in Mechanical Engineering.
[32] Al-Braik, A., Hamomd, O., Gu, F. & Ball, A. D. (2014) Diagnosis of Impeller Faults in a Centrifugal Pump Based on Spectrum Analysis of Vibration Signals. Eleventh International Conference on Condition Monitoring and Machinery Failure Prevention Technologies. Manchester UK.