Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 29534


Select areas to restrict search in scientific publication database:
10009170
Pull-In Instability Determination of Microcapacitive Sensor for Measuring Special Range of Pressure
Abstract:
Pull-in instability is a nonlinear and crucial effect that is important for the design of microelectromechanical system devices. In this paper, the appropriate electrostatic voltage range is determined by measuring fluid flow pressure via micro pressure sensor based microbeam. The microbeam deflection contains two parts, the static and perturbation deflection of static. The second order equation regarding the equivalent stiffness, mass and damping matrices based on Galerkin method is introduced to predict pull-in instability due to the external voltage. Also the reduced order method is used for solving the second order nonlinear equation of motion. Furthermore, in the present study, the micro capacitive pressure sensor is designed for measuring special fluid flow pressure range. The results show that the measurable pressure range can be optimized, regarding damping field and external voltage.
Digital Object Identifier (DOI):

References:

[1] Micromachined jets for manipulation of macro flows. Cleveland Heights, OH: Transd. Res. Found. Dussan EB, Davis SH; 1994.
[2] DJ TMC. Glezer A.1994. Micromachined jets for manip- ulation of macro flows. Cleveland Heights, OH: Transd. Res. Found. Dussan EB, Davis SH.
[3] KE E. Dynamic micromechanics on Si: techniques and devices. IEEE Trans Electron Devices. 1978; 25:1241–50.
[4] Nagel DJ. and Zaghloul ME 2001 MEMS: micro technol- ogy, mega impact. IEEE Circuits Devices; 17:14–25.
[5] Electromechanical model of RF MEMS switches. Mi- crosystem Technologies. 2003;9(6–7):420–426.
[6] Choi B, Lovell EG .1997. Improved analysis of mi- crobeams under mechanical and electrostatic loads. J Mi- cromech Microeng. 0; 7:24–29.
[7] L .2011a. Size effect on the static behaviour of electrostat- ically actuated microbeams. Acta Mech Sin; 27:445–451.
[8] Chang TP .2013. Nonlinear thermal–mechanical vibra- tion of flowconveying double-walled carbon nanotubes; 0. Subjected to random.
[9] Mattia GY. Review: static and dynamic behavior of liquids inside carbon nanotubes. Microfluid Nanofluid.5:289–305.
[10] Aser DJ, Santiago JG .2004. A review of micropumps. J Micromech Microeng. 0; 14:35–64.
[11] Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed–free end conditions.Pamidighantam S, Puers R, Baert K, Tilmans HAC. 2002; 12:458–464.
[12] Sadeghian H, Rezazadeh G, Osterberg PM .2007. Ap- plication of the generalized differential quadrature method to the study of pull-in. phenomena of MEMS switches. J Microelectromech Syst; 16:1334–1340.
[13] CM TYH. 1996.MEMS and its applications for flow con- trol.J Fluids Eng.
[14] Dumitru I. Caruntu, Israel Martinez.2014. Reduced order model of parametric resonance of electrostatically actuated MEMS cantilever resonators. Journal of Non-Linear Mechanics, 66, 28–32.
Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007