Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Paper Count: 8

8
10009729
A Posterior Predictive Model-Based Control Chart for Monitoring Healthcare
Abstract:

Quality measurement and reporting systems are used in healthcare internationally. In Australia, the Australian Council on Healthcare Standards records and reports hundreds of clinical indicators (CIs) nationally across the healthcare system. These CIs are measures of performance in the clinical setting, and are used as a screening tool to help assess whether a standard of care is being met. Existing analysis and reporting of these CIs incorporate Bayesian methods to address sampling variation; however, such assessments are retrospective in nature, reporting upon the previous six or twelve months of data. The use of Bayesian methods within statistical process control for monitoring systems is an important pursuit to support more timely decision-making. Our research has developed and assessed a new graphical monitoring tool, similar to a control chart, based on the beta-binomial posterior predictive (BBPP) distribution to facilitate the real-time assessment of health care organizational performance via CIs. The BBPP charts have been compared with the traditional Bernoulli CUSUM (BC) chart by simulation. The more traditional “central” and “highest posterior density” (HPD) interval approaches were each considered to define the limits, and the multiple charts were compared via in-control and out-of-control average run lengths (ARLs), assuming that the parameter representing the underlying CI rate (proportion of cases with an event of interest) required estimation. Preliminary results have identified that the BBPP chart with HPD-based control limits provides better out-of-control run length performance than the central interval-based and BC charts. Further, the BC chart’s performance may be improved by using Bayesian parameter estimation of the underlying CI rate.

7
9998700
Optimal Design for SARMA(P,Q)L Process of EWMA Control Chart
Authors:
Abstract:

The main goal of this paper is to study Statistical Process Control (SPC) with Exponentially Weighted Moving Average (EWMA) control chart when observations are serially-correlated. The characteristic of control chart is Average Run Length (ARL) which is the average number of samples taken before an action signal is given. Ideally, an acceptable ARL of in-control process should be enough large, so-called (ARL0). Otherwise it should be small when the process is out-of-control, so-called Average of Delay Time (ARL1) or a mean of true alarm. We find explicit formulas of ARL for EWMA control chart for Seasonal Autoregressive and Moving Average processes (SARMA) with Exponential white noise. The results of ARL obtained from explicit formula and Integral equation are in good agreement. In particular, this formulas for evaluating (ARL0) and (ARL1) be able to get a set of optimal parameters which depend on smoothing parameter (λ) and width of control limit (H) for designing EWMA chart with minimum of (ARL1).

6
9998781
An EWMA p Chart Based On Improved Square Root Transformation
Abstract:

Generally, the traditional Shewhart p chart has been developed by for charting the binomial data. This chart has been developed using the normal approximation with condition as low defect level and the small to moderate sample size. In real applications, however, are away from these assumptions due to skewness in the exact distribution. In this paper, a modified Exponentially Weighted Moving Average (EWMA) control chat for detecting a change in binomial data by improving square root transformations, namely ISRT p EWMA control chart. The numerical results show that ISRT p EWMA chart is superior to ISRT p chart for small to moderate shifts, otherwise, the latter is better for large shifts.

5
16104
Asymmetric Tukey’s Control Chart Robust to Skew and Non-Skew Process Observation
Abstract:

In reality, the process observations are away from the assumption that are normal distributed. The observations could be skew distributions which should use an asymmetric chart rather than symmetric chart. Consequently, this research aim to study the robustness of the asymmetric Tukey’s control chart for skew and non-skew distributions as Lognormal and Laplace distributions. Furthermore, the performances in detecting of a change in parameter of asymmetric and symmetric Tukey’s control charts are compared by Average ARL (AARL). The results found that the asymmetric performs better than symmetric Tukey’s control chart for both cases of skew and non-skew process observation.

4
16120
An Evaluation of Average Run Length of MaxEWMA and MaxGWMA Control Charts
Authors:
Abstract:

Exponentially weighted moving average control chart (EWMA) is a popular chart used for detecting shift in the mean of parameter of distributions in quality control. The objective of this paper is to compare the efficiency of control chart to detect an increases in the mean of a process. In particular, we compared the Maximum Exponentially Weighted Moving Average (MaxEWMA) and Maximum Generally Weighted Moving Average (MaxGWMA) control charts when the observations are Exponential distribution. The criteria for evaluate the performance of control chart is called, the Average Run Length (ARL). The result of comparison show that in the case of process is small sample size, the MaxEWMA control chart is more efficiency to detect shift in the process mean than MaxGWMA control chart. For the case of large sample size, the MaxEWMA control chart is more sensitive to detect small shift in the process mean than MaxGWMA control chart, and when the process is a large shift in mean, the MaxGWMA control chart is more sensitive to detect mean shift than MaxEWMA control chart.

3
16091
Optimal Parameters of Double Moving Average Control Chart
Authors:
Abstract:
The objective of this paper is to present explicit analytical formulas for evaluating important characteristics of Double Moving Average control chart (DMA) for Poisson distribution. The most popular characteristics of a control chart are Average Run Length ( 0 ARL ) - the mean of observations that are taken before a system is signaled to be out-of control when it is actually still incontrol, and Average Delay time ( 1 ARL ) - mean delay of true alarm times. An important property required of 0 ARL is that it should be sufficiently large when the process is in-control to reduce a number of false alarms. On the other side, if the process is actually out-ofcontrol then 1 ARL should be as small as possible. In particular, the explicit analytical formulas for evaluating 0 ARL and 1 ARL be able to get a set of optimal parameters which depend on a width of the moving average ( w ) and width of control limit ( H ) for designing DMA chart with minimum of 1 ARL
2
5222
Numerical Approximation to the Performance of CUSUM Charts for EMA (1) Process
Abstract:
These paper, we approximate the average run length (ARL) for CUSUM chart when observation are an exponential first order moving average sequence (EMA1). We used Gauss-Legendre numerical scheme for integral equations (IE) method for approximate ARL0 and ARL1, where ARL in control and out of control, respectively. We compared the results from IE method and exact solution such that the two methods perform good agreement.
1
11942
Nonconforming Control Charts for Zero-Inflated Poisson Distribution
Abstract:

This paper developed the c-Chart based on a Zero- Inflated Poisson (ZIP) processes that approximated by a geometric distribution with parameter p. The p estimated that fit for ZIP distribution used in calculated the mean, median, and variance of geometric distribution for constructed the c-Chart by three difference methods. For cg-Chart, developed c-Chart by used the mean and variance of the geometric distribution constructed control limits. For cmg-Chart, the mean used for constructed the control limits. The cme- Chart, developed control limits of c-Chart from median and variance values of geometric distribution. The performance of charts considered from the Average Run Length and Average Coverage Probability. We found that for an in-control process, the cg-Chart is superior for low level of mean at all level of proportion zero. For an out-of-control process, the cmg-Chart and cme-Chart are the best for mean = 2, 3 and 4 at all level of parameter.

Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007