Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Paper Count: 18

Investigating the Fiber Content, Fiber Length, and Curing Characteristics of 3D Printed Recycled Carbon Fiber

As composite materials continue to gain popularity in the aerospace industry; large airframe sections made out of composite materials are becoming the standard for aerospace manufacturers. However, the heavy utilization of these composite materials also increases the importance of the recycling of these composite materials. A team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students have partnered to investigate the characteristics of 3D printed recycled carbon fiber. A prototype of a 3D printed recycled carbon fiber part was provided by an industry partner and different sections of the prototype were used to create specimens. A furnace was utilized in order to remove the polymer from the specimens and the specimen’s fiber content and fiber length was calculated from the remaining fibers. A differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) test was also conducted on the 3D printed recycled carbon fiber prototype in order to determine the prototype’s degree of cure at different locations. The data collected from this study provided valuable information in the process improvement and understanding of 3D printed recycled carbon fiber.

Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications
Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics.
Thixomixing as Novel Method for Fabrication Aluminum Composite with Carbon and Alumina Fibers
This study focuses on a novel method for dispersion and distribution of reinforcement under high intensive shear stress to produce metal composites. The polyacrylonitrile (PAN)-based short carbon fiber (Csf) and Nextel 610 alumina fiber were dispersed under high intensive shearing at mushy zone in semi-solid of A356 by a novel method. The bundles and clusters were embedded by infiltration of slurry into the clusters, thus leading to a uniform microstructure. The fibers were embedded homogenously into the aluminum around 576-580°C with around 46% of solid fraction. Other experiments at 615°C and 568°C which are contained 0% and 90% solid respectively were not successful for dispersion and infiltration of aluminum into bundles of Csf. The alumina fiber has been cracked by high shearing load. The morphologies and crystalline phase were evaluated by SEM and XRD. The adopted thixo-process effectively improved the adherence and distribution of Csf into Al that can be developed to produce various composites by thixomixing.
Effect of Chromium Behavior on Mechanical and Electrical Properties of P/M Copper-Chromium Alloy Dispersed with VGCF
Microstructural and electrical properties of Cu-chromium alloy (Cu-Cr) dispersed with vapor-grown carbon fiber (VGCF) prepared by powder metallurgy (P/M) process have been investigated. Cu-0.7 mass% Cr pre-alloyed powder (Cu-Cr) made by water atomization process was used as raw materials, which contained solid solute Cr elements in Cu matrix. The alloy powder coated with un-bundled VGCF by using oil coating process was consolidated at 1223 K in vacuum by spark plasma sintering, and then extruded at 1073 K. The extruded Cu-Cr alloy (monolithic alloy) had 209.3 MPa YS and 80.4 IACS% conductivity. The extruded Cu-Cr with 0.1 mass% VGCF composites revealed a small decrease of YS compared to the monolithic Cu-Cr alloy. On the other hand, the composite had a higher electrical conductivity than that of the monolithic alloy. For example, Cu-Cr with 0.1 mass% VGCF composite sintered for 5 h showed 182.7 MPa YS and 89.7 IACS% conductivity. In the case of Cu-Cr with VGCFs composites, the Cr concentration was observed around VGCF by SEM-EDS analysis, where Cr23C6 compounds were detected by TEM observation. The amount of Cr solid solution in the matrix of the Cu-Cr composites alloy was about 50% compared to the monolithic Cu-Cr sintered alloy, and resulted in the remarkable increment of the electrical conductivity.
A Study on the Non-Destructive Test Characterization of Carbon Fiber Reinforced Plastics Using Thermo-Graphic Camera

Non-destructive testing and evaluation techniques for assessing the integrity of composite structures are essential to both reduce manufacturing costs and out of service time of transport means due to maintenance. In this study, Analyze into non-destructive test characterization of carbon fiber reinforced plastics (CFRP) internal and external defects using thermo-graphic camera and transient thermography method. non-destructive testing were characterized by defect size (Ø8, Ø10, Ø12, Ø14) and depth (1.2mm, 2.4mm).

Strengthening RC Columns Using Carbon Fiber Reinforced Epoxy Composites Modified with Carbon Nanotubes

This paper investigates the viability of using carbon fiber reinforced epoxy composites modified with carbon nanotubes to strengthening reinforced concrete (RC) columns. Six RC columns was designed and constructed according to ASCE standards. The columns were wrapped using carbon fiber sheets impregnated with either neat epoxy or CNTs modified epoxy. These columns were then tested under concentric axial loading. Test results show that; compared to the unwrapped specimens; wrapping concrete columns with carbon fiber sheet embedded in CNTs modified epoxy resulted in an increase in its axial load resistance, maximum displacement, and toughness values by 24%, 109% and 232%, respectively. These results reveal that adding CNTs into epoxy resin enhanced the confinement effect, specifically, increased the axial load resistance, maximum displacement, and toughness values by 11%, 6%, and 19%, respectively compared with columns strengthening with carbon fiber sheet embedded in neat epoxy.

Electromagnetic Interference Shielding Characteristics for Stainless Wire Mesh and Number of Plies of Carbon Fiber Reinforced Plastic

In this paper, the electromagnetic shielding characteristics of an up-to-date typical carbon filler material, carbon fiber used with a metal mesh were investigated. Carbon fiber 12k-prepregs, where carbon fibers were impregnated with epoxy, were laminated with wire meshes, vacuum bag-molded and hardened to manufacture hybrid-type specimens, with which an electromagnetic shield test was performed in accordance with ASTM D4935-10, through which was known as the most excellent reproducibility is obtainable among electromagnetic shield tests. In addition, glass fiber prepregs whose electromagnetic shielding effect were known as insignificant were laminated and formed with wire meshes to verify the validity of the electromagnetic shield effect of wire meshes in order to confirm the electromagnetic shielding effect of metal meshes corresponding existing carbon fiber 12k-prepregs. By grafting carbon fibers, on which studies are being actively underway in the environmental aspects and electromagnetic shielding effect, with hybrid-type wire meshes that were analysed through the tests, in this study, the applicability and possibility are proposed.

A Study on the Interlaminar Shear Strength of Carbon Fiber Reinforced Plastics Depending on the Lamination Methods

The prepreg process among the CFRP (Carbon Fiber Reinforced Plastic) forming methods is the short term of ‘Pre-impregnation’, which is widely used for aerospace composites that require a high quality property such as a fiber-reinforced woven fabric, in which an epoxy hardening resin is impregnated the reality. However, that this process requires continuous researches and developments for its commercialization because the delamination characteristically develops between the layers when a great weight is loaded from outside to supplement such demerit, three lamination methods among the prepreg lamination methods of CFRP were designed to minimize the delamination between the layers due to external impacts. Further, the newly designed methods and the existing lamination methods were analyzed through a mechanical characteristic test, Interlaminar Shear Strength test. The Interlaminar Shear Strength test result confirmed that the newly proposed three lamination methods, i.e. the Roll, Half and Zigzag laminations, presented more excellent strengths compared to the conventional Ply lamination. The interlaminar shear strength in the roll method with relatively dense fiber distribution was approximately 1.75% higher than that in the existing ply lamination method, and in the half method, it was approximately 0.78% higher.

A Study on the Comparison of Mechanical and Thermal Properties According to Laminated Orientation of CFRP through Bending Test

In rapid industrial development, the demand for high-strength and lightweight materials have been increased. Thus, various CFRP (Carbon Fiber Reinforced Plastics) with composite materials are being used. The design variables of CFRP are its lamination direction, order and thickness. Thus, the hardness and strength of CFRP depends much on their design variables. In this paper, the lamination direction of CFRP was used to produce a symmetrical ply [0°/0°, -15°/+15°, -30°/+30°, -45°/+45°, -60°/+60°, -75°/+75° and 90°/90°] and an asymmetrical ply [0°/15°, 0°/30°, 0°/45°, 0°/60° 0°/75° and 0°/90°]. The bending flexure stress of the CFRP specimen was evaluated through a bending test. Its thermal property was measured using an infrared camera. The symmetrical specimen and the asymmetrical specimen were analyzed. The results showed that the asymmetrical specimen increased the bending loads according to the increase in the orientation angle; and from 0°, the symmetrical specimen showed a tendency opposite the asymmetrical tendency because the tensile force of fiber differs at the vertical direction of its load. Also, the infrared camera showed that the thermal property had a trend similar to that of the mechanical properties.

Forming Simulation of Thermoplastic Pre-Impregnated Textile Composite

The process of thermoforming a carbon fiber reinforced thermoplastic (CFRTP) has increased its presence in the automotive industry for its wide applicability to the mass production car. A non-isothermal forming for CFRTP can shorten its cycle time to less than 1 minute. In this paper, the textile reinforcement FE model which the authors proposed in a previous work is extended to the CFRTP model for non-isothermal forming simulation. The effect of thermoplastic is given by adding shell elements which consider thermal effect to the textile reinforcement model. By applying Reuss model to the stress calculation of thermoplastic, the proposed model can accurately predict in-plane shear behavior, which is the key deformation mode during forming, in the range of the process temperature. Using the proposed model, thermoforming simulation was conducted and the results are in good agreement with the experimental results.

Thermo-Mechanical Characterization of MWCNTs-Modified Epoxy Resin

An industrial epoxy adhesive used in Carbon Fiber Reinforced Polymer (CFRP) strengthening systems was modified by dispersing multi-walled carbon nanotubes (MWCNTs). Nanocomposites were fabricated using the solvent-assisted dispersion method and ultrasonic mixing. Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and tensile tests were conducted to study the effect of nanotubes dispersion on the thermal and mechanical properties of the epoxy composite. Experimental results showed a substantial enhancement in the decomposition temperature and tensile properties of epoxy composite, while, the glass transition temperature (Tg) was slightly reduced due to the solvent effect. The morphology of the epoxy nanocomposites was investigated by SEM. It was proved that using solvent improves the nanotubes dispersion. However, at contents higher than 2 wt. %, nanotubes started to re-bundle in the epoxy matrix which negatively affected the final properties of epoxy composite.

A Fundamental Study on the Anchor Performance of Non-Surface Treated Multi CFRP Tendons

CFRP (Carbon Fiber Reinforced Polymer) is mainly used as reinforcing material for degraded structures owing to its advantages including its non-corrodibility, high strength and lightweight properties. Recently, dedicated studies focused not only on its simple bonding but also on its tensioning. The tension necessary for prestressing requires the anchoring of multi-CFRP tendons with high capacity and the surface treatment of the CFRP tendons may also constitute an important issue according to the type of anchor. The wedge type, swage type or bonded type anchor can be used to anchor the CFRP tendon. The bonded type anchor presents the disadvantage to lengthen the length of the anchor due to the low bond strength of the CFRP tendon without surface treatment. This study intends to overcome this drawback through the application of a method enlarging the bond area at the end of the CFRP tendon. This method enlarges the bond area by splitting the end of the CFRP tendon along its length and can be applied when CFRP is produced by pultrusion. The application of this method shows that the mono-CFRP tendon and 3-multi CFRP tendon secured the anchor performance corresponding to the tensile performance of the CFRP tendon and that the 7-multi tendon secured anchor performance corresponding to 90% of the tensile strength due to the occurrence of buckling in the steel tube anchorage. 

Using Molecular Dynamics to Assess Mechanical Properties of PAN-Based Carbon Fibers Comprising Imperfect Crystals with Amorphous Structures

We constructed an atomic structure model for a PAN-based carbon fiber containing amorphous structures using molecular dynamics methods. It was found that basic physical properties such as crystallinity, Young’s modulus, and thermal conductivity of our model were nearly identical to those of real carbon fibers. We then obtained the tensile strength of a carbon fiber, which has no macro defects. We finally determined that the limitation of the tensile strength was 19 GPa.

Theoretical Study on Torsional Strengthening of Multi-cell RC Box Girders
A new analytical method to predict the torsional capacity and behavior of R.C multi-cell box girders strengthened with carbon fiber reinforced polymer (CFRP) sheets is presented. Modification was done on the Softened Truss Model (STM) in the proposed method; the concrete torsional problem is solved by combining the equilibrium conditions, compatibility conditions and constitutive laws of materials by taking into account the confinement of concrete with CFRP sheets. A specific algorithm is developed to predict the torsional behavior of reinforced concrete multi-cell box girders with or without strengthening by CFRP sheets. Applications of the developed method as an assessment tool to strengthened multicell box girders with CFRP and first analytical example that demonstrate the contribution of the CFRP materials on the torsional response is also included.
Applications of Carbon Fibers Produced from Polyacrylonitrile Fibers
Carbon fibers have specific characteristics in comparison with industrial and structural materials used in different applications. Special properties of carbon fibers make them attractive for reinforcing and fabrication of composites. These fibers have been utilized for composites of metals, ceramics and plastics. However, it-s mainly used in different forms to reinforce lightweight polymer materials such as epoxy resin, polyesters or polyamides. The composites of carbon fiber are stronger than steel, stiffer than titanium, and lighter than aluminum and nowadays they are used in a variety of applications. This study explains applications of carbon fibers in different fields such as space, aviation, transportation, medical, construction, energy, sporting goods, electronics, and the other commercial/industrial applications. The last findings of composites with polymer, metal and ceramic matrices containing carbon fibers and their applications in the world investigated. Researches show that carbon fibers-reinforced composites due to unique properties (including high specific strength and specific modulus, low thermal expansion coefficient, high fatigue strength, and high thermal stability) can be replaced with common industrial and structural materials.
Investigation on the Feasibility of Composite Coil Spring for Automotive Applications
This paper demonstrates the feasibility of replacing the metal coil spring with the composite coil spring. Three different types of springs were made using glass fiber, carbon fiber and combination of glass fiber and carbon fiber. The objective of the study is to reduce the weight of the spring. According to the experimental results the spring rate of the carbon fiber spring is 34% more than the glass fiber spring and 45% more than the glass fiber/carbon fiber spring. The weight of the carbon fiber spring is 18% less than the glass fiber spring, 15% less than the Glass fiber/carbon fiber spring and 80% less than the steel spring.
FT-IR Study of Stabilized PAN Fibers for Fabrication of Carbon Fibers
In this investigation, types of commercial and special polyacrylonitrile (PAN) fibers contain sodium 2-methyl-2- acrylamidopropane sulfonate (SAMPS) and itaconic acid (IA) comonomers were studied by fourier transform infrared (FT-IR) spectroscopy. The study of FT-IR spectra of PAN fibers samples with different comonomers shows that during stabilization of PAN fibers, the peaks related to C≡N bonds and CH2 are reduced sharply. These reductions are related to cyclization of nitrile groups and stabilization procedure. This reduction in PAN fibers contain IA comonomer is very intense in comparison with PAN fibers contain SAMPS comonomer. This fact indicates the cycling and stabilization for sample contain IA comonomer have been conducted more completely. Therefore the carbon fibers produced from this material have higher tensile strength due to suitable stabilization.
Conversion of Modified Commercial Polyacrylonitrile Fibers to Carbon Fibers
Carbon fibers are fabricated from different materials, such as special polyacrylonitrile (PAN) fibers, rayon fibers and pitch. Among these three groups of materials, PAN fibers are the most widely used precursor for the manufacture of carbon fibers. The process of fabrication carbon fibers from special PAN fibers includes two steps; oxidative stabilization at low temperature and carbonization at high temperatures in an inert atmosphere. Due to the high price of raw materials (special PAN fibers), carbon fibers are still expensive. In the present work the main goal is making carbon fibers from low price commercial PAN fibers with modified chemical compositions. The results show that in case of conducting completes stabilization process, it is possible to produce carbon fibers with desirable tensile strength from this type of PAN fibers. To this matter, thermal characteristics of commercial PAN fibers were investigated and based upon the obtained results, with some changes in conventional procedure of stabilization in terms of temperature and time variables; the desirable conditions of complete stabilization is achieved.
Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007