Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Paper Count: 43

A Comparative Study on the Performance of Viscous and Friction Dampers under Seismic Excitation

Earthquakes over the years have been known to cause devastating damage on buildings and induced huge loss on human life and properties. It is for this reason that engineers have devised means of protecting buildings and thus protecting human life. Since the invention of devices such as the viscous and friction dampers, scientists/researchers have been able to incorporate these devices into buildings and other engineering structures. The viscous damper is a hydraulic device which dissipates the seismic forces by pushing fluid through an orifice, producing a damping pressure which creates a force. In the friction damper, the force is mainly resisted by converting the kinetic energy into heat by friction. Devices such as viscous and friction dampers are able to absorb almost all the earthquake energy, allowing the structure to remain undamaged (or with some amount of damage) and ready for immediate reuse (with some repair works). Comparing these two devices presents the engineer with adequate information on the merits and demerits of these devices and in which circumstances their use would be highly favorable. This paper examines the performance of both viscous and friction dampers under different ground motions. A two-storey frame installed with both devices under investigation are modeled in commercial computer software and analyzed under different ground motions. The results of the performance of the structure are then tabulated and compared. Also included in this study is the ease of installation and maintenance of these devices.

Influence of a Pulsatile Electroosmotic Flow on the Dispersivity of a Non-Reactive Solute through a Microcapillary
The influence of a pulsatile electroosmotic flow (PEOF) at the rate of spread, or dispersivity, for a non-reactive solute released in a microcapillary with slippage at the boundary wall (modeled by the Navier-slip condition) is theoretically analyzed. Based on the flow velocity field developed under such conditions, the present study implements an analytical scheme of scaling known as the Theory of Homogenization, in order to obtain a mathematical expression for the dispersivity, valid at a large time scale where the initial transients have vanished and the solute spreads under the Taylor dispersion influence. Our results show the dispersivity is a function of a slip coefficient, the amplitude of the imposed electric field, the Debye length and the angular Reynolds number, highlighting the importance of the latter as an enhancement/detrimental factor on the dispersivity, which allows to promote the PEOF as a strong candidate for chemical species separation at lab-on-a-chip devices.
Evaluation of NH3-Slip from Diesel Vehicles Equipped with Selective Catalytic Reduction Systems by Neural Networks Approach
Selective catalytic reduction systems for nitrogen oxides reduction by ammonia has been the chosen technology by most of diesel vehicle (i.e. bus and truck) manufacturers in Brazil, as also in Europe. Furthermore, at some conditions, over-stoichiometric ammonia availability is also needed that increases the NH3 slips even more. Ammonia (NH3) by this vehicle exhaust aftertreatment system provides a maximum efficiency of NOx removal if a significant amount of NH3 is stored on its catalyst surface. In the other words, the practice shows that slightly less than 100% of the NOx conversion is usually targeted, so that the aqueous urea solution hydrolyzes to NH3 via other species formation, under relatively low temperatures. This paper presents a model based on neural networks integrated with a road vehicle simulator that allows to estimate NH3-slip emission factors for different driving conditions and patterns. The proposed model generates high NH3slips which are not also limited in Brazil, but more efforts needed to be made to elucidate the contribution of vehicle-emitted NH3 to the urban atmosphere.
Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries

Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.

Slip Suppression Sliding Mode Control with Various Chattering Functions
This study presents performance analysis results of SMC (Sliding mode control) with changing the chattering functions applied to slip suppression problem of electric vehicles (EVs). In SMC, chattering phenomenon always occurs through high frequency switching of the control inputs. It is undesirable phenomenon and degrade the control performance, since it causes the oscillations of the control inputs. Several studies have been conducted on this problem by introducing some general saturation function. However, study about whether saturation function was really best and the performance analysis when using the other functions, weren’t being done so much. Therefore, in this paper, several candidate functions for SMC are selected and control performance of candidate functions is analyzed. In the analysis, evaluation function based on the trade-off between slip suppression performance and chattering reduction performance is proposed. The analyses are conducted in several numerical simulations of slip suppression problem of EVs. Then, we can see that there is no difference of employed candidate functions in chattering reduction performance. On the other hand, in slip suppression performance, the saturation function is excellent overall. So, we conclude the saturation function is most suitable for slip suppression sliding mode control.
Flow inside Micro-Channel Bounded by Superhydrophobic Surface with Eccentric Micro-Grooves
The superhydrophobic surface is widely used to reduce friction for the flow inside micro-channel and can be used to control/manipulate fluid, cells and even proteins in lab-on-chip. Fabricating micro grooves on hydrophobic surfaces is a common method to obtain such superhydrophobic surface. This study utilized the numerical method to investigate the effect of eccentric micro-grooves on the friction of flow inside micro-channel. A detailed parametric study was conducted to reveal how the eccentricity of micro-grooves affects the micro-channel flow under different grooves sizes, channel heights, Reynolds number. The results showed that the superhydrophobic surface with eccentric micro-grooves induces less friction than the counter part with aligning micro-grooves, which means requiring less power for pumps.
Rotor Side Speed Control Methods Using MATLAB/Simulink for Wound Induction Motor

In recent advancements in electric machine and drives, wound rotor motor is extensively used. The merit of using wound rotor induction motor is to control speed/torque characteristics by inserting external resistance. Wound rotor induction motor can be used in the cases such as (a) low inrush current, (b) load requiring high starting torque, (c) lower starting current is required, (d) loads having high inertia, and (e) gradual built up of torque. Examples include conveyers, cranes, pumps, elevators, and compressors. This paper includes speed control of wound induction motor using MATLAB/Simulink for rotor resistance and slip power recovery method. The characteristics of these speed control methods are hence analyzed.

Comparisons of Co-Seismic Gravity Changes between GRACE Observations and the Predictions from the Finite-Fault Models for the 2012 Mw = 8.6 Indian Ocean Earthquake Off-Sumatra
The Gravity Recovery and Climate Experiment (GRACE) has been a very successful project in determining math redistribution within the Earth system. Large deformations caused by earthquakes are in the high frequency band. Unfortunately, GRACE is only capable to provide reliable estimate at the low-to-medium frequency band for the gravitational changes. In this study, we computed the gravity changes after the 2012 Mw8.6 Indian Ocean earthquake off-Sumatra using the GRACE Level-2 monthly spherical harmonic (SH) solutions released by the University of Texas Center for Space Research (UTCSR). Moreover, we calculated gravity changes using different fault models derived from teleseismic data. The model predictions showed non-negligible discrepancies in gravity changes. However, after removing high-frequency signals, using Gaussian filtering 350 km commensurable GRACE spatial resolution, the discrepancies vanished, and the spatial patterns of total gravity changes predicted from all slip models became similar at the spatial resolution attainable by GRACE observations, and predicted-gravity changes were consistent with the GRACE-detected gravity changes. Nevertheless, the fault models, in which give different slip amplitudes, proportionally lead to different amplitude in the predicted gravity changes.
Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review

In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot’s ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance.

Analysis of Cascade Control Structure in Train Dynamic Braking System
In recent years, increasing the usage of railway transportations especially in developing countries caused more attention to control systems railway vehicles. Consequently, designing and implementing the modern control systems to improve the operating performance of trains and locomotives become one of the main concerns of researches. Dynamic braking systems is an important safety system which controls the amount of braking torque generated by traction motors, to keep the adhesion coefficient between the wheel-sets and rail road in optimum bound. Adhesion force has an important role to control the braking distance and prevent the wheels from slipping during the braking process. Cascade control structure is one of the best control methods for the wide range of industrial plants in the presence of disturbances and errors. This paper presents cascade control structure based on two forward simple controllers with two feedback loops to control the slip ratio and braking torque. In this structure, the inner loop controls the angular velocity and the outer loop control the longitudinal velocity of the locomotive that its dynamic is slower than the dynamic of angular velocity. This control structure by controlling the torque of DC traction motors, tries to track the desired velocity profile to access the predefined braking distance and to control the slip ratio. Simulation results are employed to show the effectiveness of the introduced methodology in dynamic braking system.
Assessment of Slope Stability by Continuum and Discontinuum Methods
The development of numerical analysis and its application to geomechanics problems have provided geotechnical engineers with extremely powerful tools. One of the most important problems in geotechnical engineering is the slope stability assessment. It is a very difficult task due to several aspects such the nature of the problem, experimental consideration, monitoring, controlling, and assessment. The main objective of this paper is to perform a comparative numerical study between the following methods: The Limit Equilibrium (LEM), Finite Element (FEM), Limit Analysis (LAM) and Distinct Element (DEM). The comparison is conducted in terms of the safety factors and the critical slip surfaces. Through the results, we see the feasibility to analyse slope stability by many methods.
MHD Chemically Reacting Viscous Fluid Flow towards a Vertical Surface with Slip and Convective Boundary Conditions
MHD chemically reacting viscous fluid flow towards a vertical surface with slip and convective boundary conditions has been conducted. The temperature and the chemical species concentration of the surface and the velocity of the external flow are assumed to vary linearly with the distance from the vertical surface. The governing differential equations are modeled and transformed into systems of ordinary differential equations, which are then solved numerically by a shooting method. The effects of various parameters on the heat and mass transfer characteristics are discussed. Graphical results are presented for the velocity, temperature, and concentration profiles whilst the skin-friction coefficient and the rate of heat and mass transfers near the surface are presented in tables and discussed. The results revealed that increasing the strength of the magnetic field increases the skin-friction coefficient and the rate of heat and mass transfers toward the surface. The velocity profiles are increased towards the surface due to the presence of the Lorenz force, which attracts the fluid particles near the surface. The rate of chemical reaction is seen to decrease the concentration boundary layer near the surface due to the destructive chemical reaction occurring near the surface.
MP-SMC-I Method for Slip Suppression of Electric Vehicles under Braking
In this paper, a new SMC (Sliding Mode Control) method with MP (Model Predictive Control) integral action for the slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method introduce the integral term with standard SMC gain , where the integral gain is optimized for each control period by the MPC algorithms. The aim of this method is to improve the safety and the stability of EVs under braking by controlling the wheel slip ratio. There also include numerical simulation results to demonstrate the effectiveness of the method.
Bond-Slip Response of Reinforcing Bars Embedded in High Performance Fiber Reinforced Cement Composites
This paper presents the results of an experimental study undertaken to evaluate the local bond stress-slip response of short embedment of reinforcing bars in normal concrete (NC) and high performance fiber reinforced cement composites (HPFRCC) blocks. Long embedment was investigated as well to gain insights on the distribution of strain, slip, bar stress and bond stress along the bar especially in post-yield range. A total of 12 specimens were tested, by means of pull-out of the reinforcing bars from concrete blocks. It was found that the enhancement of local bond strength can be reached up to 50% and ductility of the bond behavior was improved significantly if HPFRCC is used. Also, under a constant strain at loaded end, HPFRCC has delayed yielding of bars at other location from the loaded end. Hence, the reduction of bond stress was slower for HPFRCC in comparison with NC. Due to the same reason, the total slips at loaded end for HPFRCC was smaller than NC as expected. Test results indicated that HPFRCC has better bond slip behavior which makes it a suitable material to be employed in anchorage zone such as beam-column joints.
Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity

In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.

An Experimental Investigation of Bond Properties of Reinforcements Embedded in Geopolymer Concrete

Geopolymer concretes are new class of construction materials that have emerged as an alternative to Ordinary Portland cement concrete. Considerable researches have been carried out on material development of geopolymer concrete; however, a few studies have been reported on the structural use of them. This paper presents the bond behaviors of reinforcement embedded in fly ash based geopolymer concrete. The development lengths of reinforcement for various compressive strengths of concrete, 20, 30 and 40 MPa, and reinforcement diameters, 10, 16 and 25 mm, are investigated. Total 27 specimens were manufactured and pull-out test according to EN 10080 was applied to measure bond strength and slips between concrete and reinforcements. The average bond strengths decreased from 23.06MPa to 17.26 MPa, as the diameters of reinforcements increased from 10mm to 25mm. The compressive strength levels of geopolymer concrete showed no significant influence on bond strengths in this study. Also, the bond-slip relations between geopolymer concrete and reinforcement are derived using non-linear regression analysis for various experimental conditions.

Analysis of Slip Flow Heat Transfer between Asymmetrically Heated Parallel Plates
In the present study, analysis of heat transfer is carried out in the slip flow region for the fluid flowing between two parallel plates by employing the asymmetric heat fluxes at surface of the plates. The flow is assumed to be hydrodynamically and thermally fully developed for the analysis. The second order velocity slip and viscous dissipation effects are considered for the analysis. Closed form expressions are obtained for the Nusselt number as a function of Knudsen number and modified Brinkman number. The limiting condition of the present prediction for Kn = 0, Kn2 = 0, and Brq1 = 0 is considered and found to agree well with other analytical results.
Model Predictive 2DOF PID Slip Suppression Control of Electric Vehicle under Braking

In this paper, a 2DOF (two degrees of freedom) PID (Proportional-Integral-Derivative) controller based on MPC (Model predictive control) algorithm fo slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method aims to improve the safety and the stability of EVs under braking by controlling the wheel slip ration. There also include numerical simulation results to demonstrate the effectiveness of the method.

Development and Structural Performance Evaluation on Slit Circular Shear Panel Damper

There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of slit circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. The main parameters considered are: diameter-to-thickness (D/t) ratio and slit length-to-width ratio (l/w). Depending on these parameters three different buckling mode and hysteretic behavior was found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation and yielding with buckling and strength degradation which forms pinching at initial displacement. The susceptible location at which the possible crack is initiated is also identified for selected specimens using rupture index.

MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip

The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local similarity transformations. The differential equations are solved by variational finite element method. The effects of different controlling parameters on the flow field and heat transfer characteristics are examined. The numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically. The comparison confirmed excellent agreement. The present study is of great interest in coating and suspensions, cooling of metallic plate, oils and grease, paper production, coal water or coal-oil slurries, heat exchangers technology, materials processing exploiting.

The Incidence of Metabolic Syndrome in Women with Impaired Reproductive Function According to Astana, Kazakhstan

This work presents the results of a study the incidence of metabolic syndrome (MetS) in women with impaired reproductive function (IRF) according to the data of Astana, Kazakhstan. The anthropometric, biochemical and instrumental studies were conducted among 515 women, of which 53 patients with MetS according to IDF criteria, 2006, were selected. The frequency of occurrence of the IRF, due to MetS is 10.3% of cases according to the data of Astana. In women of childbearing age with IRF and the MetS, blood pressure (BP), indicators of carbohydrate and lipid metabolism were significantly higher and the level of high density lipoprotein (HDL) significantly lower compared to the same in women with the IRF without MetS. The hyperandrogenism, the hyperestrogenemia, the hyperprolactinemia and the hypoprogesteronemia were found in the patients with MetS and IRF, indicating the impact of MetS on the development of the polycystic ovary syndrome in 28% of cases and hyperplastic processes of the myometrium in 20% of cases.

Slip Effect Study of 4:1 Contraction Flow for Oldroyd-B Model

The numerical simulation of the slip effect via vicoelastic fluid for 4:1 contraction problem is investigated with regard to kinematic behaviors of streamlines and stress tensor by models of the Navier-Stokes and Oldroyd-B equations. Twodimensional spatial reference system of incompressible creeping flow with and without slip velocity is determined and the finite element method of a semi-implicit Taylor-Galerkin pressure-correction is applied to compute the problem of this Cartesian coordinate system including the schemes of velocity gradient recovery method and the streamline-Upwind / Petrov-Galerkin procedure. The slip effect at channel wall is added to calculate after each time step in order to intend the alteration of flow path. The result of stress values and the vortices are reduced by the optimum slip coefficient of 0.1 with near the outcome of analytical solution.

Effects of Slip Condition and Peripheral Layer on Couple Stress Fluid Flow through a Channel with Mild Stenosis

Steady incompressible couple stress fluid flow through two dimensional symmetric channel with stenosis is investigated. The flow consisting of a core region to be a couple stress fluid and a peripheral layer of plasma (Newtonian fluid). Assuming the stenosis to be mild, the equations governing the flow of the proposed model are solved using the slip boundary condition and closed form expressions for the flow characteristics (the dimensionless resistance to flow and wall shear stress at the maximum height of stenosis) are derived. The effects of various parameters on these flow variables have been studied. It is observed that the resistance to flow as well as the wall shear stress increase with the height of stenosis, viscosity ratio and Darcy number. However, the trend is reversed as the slip and the couple stress parameter increase.

Evaluating and Measuring the Performance Parameters of Agricultural Wheels

Evaluating and measuring the performance parameters of wheels and tillage equipments under controlled conditions obligates the use of soil bin facility. In this research designing, constructing and evaluating a single-wheel tester has been studied inside a soil bin. The tested wheel was directly driven by the electric motor. Vertical load was applied by a power bolt on wheel. This tester can measure required draft force, the depth of tire sinkage, contact area between wheel and soil, and soil stress at different depths and in the both alongside and perpendicular to the direction of traversing. In order to evaluate the system preparation, traction force was measured by the connected S-shaped load cell as arms between the wheel-tester and carriage. Treatments of forward speed, slip, and vertical load at a constant pressure were investigated in a complete randomized block design. The results indicated that the traction force increased at constant wheel load. The results revealed that the maximum traction force was observed within the %15 of slip.

Vibration Attenuation in Layered and Welded Beams with Unequal Thickness
In built-up structures, one of the effective ways of dissipating unwanted vibration is to exploit the occurrence of slip at the interfaces of structural laminates. The present work focuses on the dynamic analysis of welded structures. A mathematical formulation has been developed for the mechanism of slip damping in layered and welded mild steel beams with unequal thickness subjected to both periodic and non-periodic forces. It is observed that a number of vital parameters such as; thickness ratio, pressure distribution characteristics, relative slip and kinematic co-efficient of friction at the interfaces, nature of exciting forces, length and thickness of the beam specimen govern the damping characteristics of these structures. Experimental verification has been carried out to validate the analysis and study the effect of these parameters. The developed damping model for the structure is found to be in fairly good agreement with the measured data. Finally, the results of the analysis are discussed and rationalized.
The Analysis of Two-Phase Jet in Pneumatic Powder Injection into Liquid Alloys
The results of the two-phase gas-solid jet in pneumatic powder injection process analysis were presented in the paper. The researches were conducted on model set-up with high speed camera jet movement recording. Then the recorded material was analyzed to estimate main particles movement parameters. The values obtained from this direct measurement were compared to those calculated with the use of the well-known formulas for the two-phase flows (pneumatic conveying). Moreover, they were compared to experimental results previously achieved by authors. The analysis led to conclusions which to some extent changed the assumptions used even by authors, regarding the two-phase jet in pneumatic powder injection process. Additionally, the visual analysis of the recorded clips supplied data to make a more complete evaluation of the jet behavior in the lance outlet than before.
Slip Suppression of Electric Vehicles using Model Predictive PID Controller
In this paper, a new model predictive PID controller design method for the slip suppression control of EVs (electric vehicles) is proposed. The proposed method aims to improve the maneuverability and the stability of EVs by controlling the wheel slip ratio. The optimal control gains of PID framework are derived by the model predictive control (MPC) algorithm. There also include numerical simulation results to demonstrate the effectiveness of the method.
Semi-Analytic Solution and Hydrodynamics Behavior of Fluid Flow in Micro-Converging plates
The hydrodynamics behavior of fluid flow in microconverging plates is investigated analytically. Effects of Knudsen number () on the microchannel hydrodynamics behavior and the coefficient of friction are investigated. It is found that as  increases the slip in the hydrodynamic boundary condition increases. Also, the coefficient of friction decreases as  increases.
A Robust Wheel Slip Controller for a Hybrid Braking System
A robust wheel slip controller for electric vehicles is introduced. The proposed wheel slip controller exploits the dynamics of electric traction drives and conventional hydraulic brakes for achieving maximum energy efficiency and driving safety. Due to the control of single wheel traction motors in combination with a hydraulic braking system, it can be shown, that energy recuperation and vehicle stability control can be realized simultaneously. The derivation of a sliding mode wheel slip controller accessing two drivetrain actuators is outlined and a comparison to a conventionally braked vehicle is shown by means of simulation.
Chronic Patients- Prescription Refill Intentions
Environment today is featured with aging population, increasing prevalence of chronic disease and complex of medical treatment. Safe use of pharmaceutics relied very much on the efforts made by both the health- related organizations and as well as the government agencies. As far as the specialization concern in providing health services to the patients, the government actively issued and implemented the divisions of medical treatment and pharmaceutical to improve the quality of care and to reduce medication errors and ensure public health. Pharmaceutical sub-sector policy has been implemented for 13 years. This study attempts to explore the factors that affect the patients- behavior intention of refilling a prescription from a NHIB pharmacy. Samples were those patients refilling their prescriptions with the case NHIB pharmacies. A self-administered questionnaire was used to collect respondents- information while the patients or family members visit the pharmacy for the refilling. 1,200 questionnaires were dispatched in 37 pharmacies that randomly selected from Pingtung City, Dongkang, Chaozhou, Hengchun areas. 732 responses were gained with 604 valid samples for further analyses. Results of data analyses indicated that respondents- attitude, subjective norm, perceived behavior control and behavior intentions toward refilling behavior varied from some demographic variables to another. This research also suggested adding actual behavior, either by a self-report or observed, into the research.
Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007