Open Science Research Excellence

Pang Hung Yiu

Publications

2

Publications

2
10010260
An Attack on the Lucas Based El-Gamal Cryptosystem in the Elliptic Curve Group Over Finite Field Using Greater Common Divisor
Abstract:

Greater common divisor (GCD) attack is an attack that relies on the polynomial structure of the cryptosystem. This attack required two plaintexts differ from a fixed number and encrypted under same modulus. This paper reports a security reaction of Lucas Based El-Gamal Cryptosystem in the Elliptic Curve group over finite field under GCD attack. Lucas Based El-Gamal Cryptosystem in the Elliptic Curve group over finite field was exposed mathematically to the GCD attack using GCD and Dickson polynomial. The result shows that the cryptanalyst is able to get the plaintext without decryption by using GCD attack. Thus, the study concluded that it is highly perilous when two plaintexts have a slight difference from a fixed number in the same Elliptic curve group over finite field.

Keywords:
Decryption, encryption, elliptic curve, greater common divisor.
1
10010261
Cryptographic Attack on Lucas Based Cryptosystems Using Chinese Remainder Theorem
Abstract:
Lenstra’s attack uses Chinese remainder theorem as a tool and requires a faulty signature to be successful. This paper reports on the security responses of fourth and sixth order Lucas based (LUC4,6) cryptosystem under the Lenstra’s attack as compared to the other two Lucas based cryptosystems such as LUC and LUC3 cryptosystems. All the Lucas based cryptosystems were exposed mathematically to the Lenstra’s attack using Chinese Remainder Theorem and Dickson polynomial. Result shows that the possibility for successful Lenstra’s attack is less against LUC4,6 cryptosystem than LUC3 and LUC cryptosystems. Current study concludes that LUC4,6 cryptosystem is more secure than LUC and LUC3 cryptosystems in sustaining against Lenstra’s attack.
Keywords:
Lucas sequence, Dickson Polynomial, faulty signature, corresponding signature, congruence.