4

4

9998700

Optimal Design for SARMA(P,Q)L Process of EWMA Control Chart

The main goal of this paper is to study Statistical Process Control (SPC) with Exponentially Weighted Moving Average (EWMA) control chart when observations are serially-correlated. The characteristic of control chart is Average Run Length (ARL) which is the average number of samples taken before an action signal is given. Ideally, an acceptable ARL of in-control process should be enough large, so-called (ARL0). Otherwise it should be small when the process is out-of-control, so-called Average of Delay Time (ARL1) or a mean of true alarm. We find explicit formulas of ARL for EWMA control chart for Seasonal Autoregressive and Moving Average processes (SARMA) with Exponential white noise. The results of ARL obtained from explicit formula and Integral equation are in good agreement. In particular, this formulas for evaluating (ARL0) and (ARL1) be able to get a set of optimal parameters which depend on smoothing parameter (λ) and width of control limit (H) for designing EWMA chart with minimum of (ARL1).

Average Run Length1, Optimal parameters, Exponentially Weighted Moving Average (EWMA) control chart.

3

2822

The Performance of Predictive Classification Using Empirical Bayes

This research is aimed to compare the percentages of correct classification of Empirical Bayes method (EB) to Classical method when data are constructed as near normal, short-tailed and long-tailed symmetric, short-tailed and long-tailed asymmetric. The study is performed using conjugate prior, normal distribution with known mean and unknown variance. The estimated hyper-parameters obtained from EB method are replaced in the posterior predictive probability and used to predict new observations. Data are generated, consisting of training set and test set with the sample sizes 100, 200 and 500 for the binary classification. The results showed that EB method exhibited an improved performance over Classical method in all situations under study.

Classification, Empirical Bayes, Posterior predictive probability.

2

5222

Numerical Approximation to the Performance of CUSUM Charts for EMA (1) Process

These paper, we approximate the average run length
(ARL) for CUSUM chart when observation are an exponential first
order moving average sequence (EMA1). We used Gauss-Legendre
numerical scheme for integral equations (IE) method for approximate
ARL0 and ARL1, where ARL in control and out of control,
respectively. We compared the results from IE method and exact
solution such that the two methods perform good agreement.

Cumulative Sum Chart, Moving Average
Observation, Average Run Length, Numerical Approximations.

1

16091

Optimal Parameters of Double Moving Average Control Chart

The objective of this paper is to present explicit analytical formulas for evaluating important characteristics of Double Moving Average control chart (DMA) for Poisson distribution. The most popular characteristics of a control chart are Average Run Length ( 0 ARL ) - the mean of observations that are taken before a system is signaled to be out-of control when it is actually still incontrol, and Average Delay time ( 1 ARL ) - mean delay of true alarm times. An important property required of 0 ARL is that it should be sufficiently large when the process is in-control to reduce a number of false alarms. On the other side, if the process is actually out-ofcontrol then 1 ARL should be as small as possible. In particular, the explicit analytical formulas for evaluating 0 ARL and 1 ARL be able to get a set of optimal parameters which depend on a width of the moving average ( w ) and width of control limit ( H ) for designing DMA chart with minimum of 1 ARL

Optimal parameters, Average Run Length, Average Delay time, Double Moving Average chart.