Investigation on Bio-Inspired Population Based Metaheuristic Algorithms for Optimization Problems in Ad Hoc Networks

C. Rajan, K. Geetha, C. Rasi Priya, R. Sasikala

Abstract—Nature is a great source of inspiration for solving complex problems in networks. It helps to find the optimal solution. Metaheuristic algorithm is one of the nature-inspired algorithm which helps in solving routing problem in networks. The dynamic features, changing of topology frequently and limited bandwidth make the routing, challenging in MANET. Implementation of appropriate routing algorithms leads to the efficient transmission of data in mobile ad hoc networks. The algorithms that are inspired by the principles of naturally-distributed/collective behavior of social colonies have shown excellence in dealing with complex optimization problems. Thus some of the bio-inspired metaheuristic algorithms help to increase the efficiency of routing in ad hoc networks. This survey work presents the overview of bio-inspired metaheuristic algorithms which support the efficiency of routing in mobile ad hoc networks.

Keywords—Ant colony optimization algorithm, Genetic algorithm, naturally inspired algorithms and particle swarm optimization algorithm.

I. INTRODUCTION

A. Definitions

Nature provides some of the efficient ways to solve complex problems in real world. In this survey paper, nature inspired (bio-inspired) algorithms which help to solve the optimization problems in Mobile Ad Hoc Network (MANET) are overviewed. Some basic definitions which are useful for the researchers are given beneath.

MANET: Mobile Ad Hoc Network (MANET) is a self-configuring infrastructure less network in which the mobile devices are connected by wireless medium. Devices in MANET move independently in any direction, and also can change its links to any other devices frequently.

ROUTING: The process of moving a packet of data from source to destination is known as routing. Which means that the process of selecting best paths in a network. Routing can also be defined as the process of exchanging information from one host to another host in a network [14]. A routing protocol uses software and routing algorithms to determine optimal network data transfer and communication paths between network nodes.

Nature Inspired Algorithms: The algorithms which are imitating processes inspired from nature are denoted as nature inspired algorithms.

Metaheuristic: The authors Lazar and Reynolds, states that the Greek words “meta” means “beyond” or “higher level” and “heuristic” means “to know”, “to find” or “to discover” [19].

Some successful metaheuristic algorithms conceived in the last few years are Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) and Bee Colony Optimization (BCO). They are population-based methods that make use of the global behavior that emerges from the local interaction of individuals with one another and with their environment.

B. Overview of Bio-Inspired Algorithms

In biological inspired artificial intelligence concepts like the approach of swarm intelligence, where the behavior of social insects like ants or bees is copied and with its help the communication is carried out exclusively through the environment. The social insects like ants, bees, wasps, and termites are live in colonies. In a social insect colony, every individual seems to act independently of others, but the colony functions as a planned unit [11]. Several algorithms inspired by natural phenomena have been proposed in many literatures. Among them, some metaheuristic search algorithms with population-based framework have shown satisfactory capabilities to handle high dimension combinatorial optimization problems [5].

The inspiring source of ACO is the foraging behavior of real ants. The ant deposits a chemical pheromone trail on the ground when it forages. The quantity of pheromone deposited depends upon the quantity and quality of the food that will guide other ants to the food source. The ants find shortest paths between their nest and food sources with the help of indirect communication between them via pheromone trails.

Fig. 1 represents the operators, control parameters and the application areas of the ant colony optimization algorithm. Pheromone trail update and evaporation of pheromone trail are the operators of the ACO algorithm. The control parameters used by the ACO algorithm includes the number of ants and number of iterations considered in the algorithm. Some of the application areas, where Ant Colony Optimization (ACO) algorithm can be used are represented in Fig. 1.
The Artificial Bee Colony (ABC) [17], [30] algorithm is a swarm based metaheuristic algorithm for solving combinatorial optimization problems. The intelligent foraging behavior of honey bees is the inspiration for the Artificial Bee Colony Algorithm. This algorithm is specifically based on the model for the foraging behavior of honey bee colonies. The foraging behavior of bees has been adapted as a useful computational algorithm to solve complex problems in different domains.

![Fig. 1 Ant Colony Optimization (ACO) algorithm](image1)

![Fig. 2 Artificial Bee Colony (ABC) algorithm](image2)

Artificial Bee Colony (ABC) algorithm is used to solve various optimization problems in different areas. Fig. 2 shows the operators, control parameters and usage areas of the ABC algorithm. Some of the areas include routing problems, scheduling problems, image segmentation and redundancy allocation problems, etc.

![Operators](operators)

![Control Parameters](control)

Particle swarm optimization (PSO) [18], [24] is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence approach. It comes from the study on the bird and fish flock movement behavior. This algorithm is widely used and rapidly developed for its easy implementation and few particles required are...
Particle Swarm Optimization (PSO) algorithm is also used in different applications areas as like as ACO and ABC algorithms. The areas of application include combinatorial optimization problems, Scheduling problems, fuzzy neural networks, etc. The operators and control parameters of PSO algorithm is shown in Fig. 3.

II. RELATED WORKS

Bio-inspired metaheuristic algorithms have been devised to find the proper solutions for the NP-hard problems and traveling Salesman Problem in a reasonable time. Many metaheuristic algorithms have been proposed earlier. The population based metaheuristics algorithms play a vital role in finding the best optimal paths in routing.

Genetic Algorithm (GA) [13] a population-based metaheuristic algorithm was introduced by Holland in the year of 1975. This algorithm solves different kinds of optimization problems and also it finds the best solution for many problems. Genetic Algorithm can be easily combined with other algorithms.

Another population-based algorithm is Particle Swarm Optimization (PSO) obtained in 1995. It is a global optimization algorithm which the best solution can be represented as a point or surface in a multi-dimensional search space [18]. In this algorithm the fitness values of the particles are used to estimate them. It obtains the best solution based on the particles which has best fitness values.

Multicast Ad-hoc On-demand Distance Vector (MAODV) protocol which is based on Particle Swarm Optimization approach for MANET is proposed in 2013. The authors had studied the performance of the MANET with regard to packet delivery ratio, jitter and end-to-end delay [25]. This PSO based MAODV protocol increases the packet delivery ratio, reduces end to end delay and jitter and also enhances the accuracy in prediction of congestion and link breaks.

Ant Colony Optimization (ACO) algorithm is another metaheuristic approach proposed by Dorigo in 1992. This algorithm replicas the behavior of ants foraging and is useful for problems which require finding the shortest path [9], [10]. The inspiration source of Ant Colony Optimization algorithm is its pheromone trails. The ants lay down its pheromones to direct other ants to the food sources.

The Artificial Bee Colony (ABC) algorithm is presented by Karaboga in 2005 is also a population based approach. The inspiration source for this algorithm is the brainy behavior of the honey bees [17]. Employed bee phase, onlooker bee phase and scout bee phase are the phases used in the proposed algorithm. The Artificial Bee Colony algorithm finds the best solution by applying these three phases [35].

Dhamodharan et al. states that the Swarm Intelligence based algorithmic approaches are best for providing energy-aware; loop free and multi-path routing in mobile ad hoc networks [8]. Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) improve the efficiency in obtaining the best solution.

Jianping Wang et al. presented a Hybrid Ant Colony Optimization routing algorithm, named as HOPNET. This hybrid algorithm is based on ACO and zone routing framework. This HOPNET algorithm extracts some of the features from ZRP and DSR protocols. The comparison result of HOPNET with AntHocNet shows that HOPNET is highly scalable for low and high mobility. It is also proven that HOPNET is better than AODV [15].
An improved ant colony-based multi-constrained QoS energy-saving routing algorithm (IAMQER) was proposed in 2014. This IAMQER algorithm increases the network throughput, improves the packet delivery ratio and reduces the network energy consumption. The performance of IAMQER algorithm is compared with the on-demand MANET routing protocol AODV. Thus, IAMQER increases the packet delivery ratio as well as reduces the packet loss ratio and reduces the average end-to-end delay. And also the energy consumption of IAMQER is low when compared with AODV and Dijkstra algorithm [34].

Manoj Kumar Patel et al. presented a swarming agent based intelligent hybrid algorithm (HACOPSO), which is based on the concept of ACO and PSO algorithms [20]. Authors compared the results of proposed algorithm with existing algorithms PSOTREE [32] and TGBACA [33]. Thus it is proven that the complexity of HACOPSO is comparable with the existing algorithms.

The comparison table for various approaches based on naturally inspired routing algorithms proposed so far is represented in Table I. The table contains the methodologies, performance metrics and parametric analysis used by the authors for each approaches mostly based on the concept of population based metaheuristics [26].

<table>
<thead>
<tr>
<th>S. No</th>
<th>Reference</th>
<th>Methodology</th>
<th>Performance Metrics</th>
<th>Parametric Analysis</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[15]</td>
<td>Proposed a hybrid routing algorithm for MANETs based on ACO and zone routing framework of border casting.</td>
<td>End to end delay, delivery ratio and control overhead</td>
<td>The algorithm is efficient and is comparatively better than AODV for end to end delay and delivery ratio. The overhead decreases and is better than AODV as the network size increases.</td>
<td>The result shows that HOPNET outperforms AntHocNet and AODV.</td>
</tr>
<tr>
<td>2</td>
<td>[6]</td>
<td>In this paper, Ant Colony Optimization for finding out best possible paths, along with Genetic Algorithm which helps in giving the globally optimal solution from all the best possible paths which were produced by Ant Colony Optimization is used.</td>
<td>Delay in packet delivery</td>
<td>Proposed algorithm GA-API overcomes the delay in packet delivery by producing the shortest path and also overcomes the problem of communication interruption due to node or link failure by finding multiple paths between pair of source and destination nodes.</td>
<td>GA-API provides satisfactory or optimum solutions, with much less computational effort. This algorithm works well for large, complex problems with greater dimensionality.</td>
</tr>
<tr>
<td>3</td>
<td>[29]</td>
<td>Proposed to use GAs with immigrants and memory schemes to solve the dynamic SP routing problem in MANETs.</td>
<td>Packet delivery ratio</td>
<td>Immigrants and memory schemes enhance the performance of GAs for the DSPRP in MANETs.</td>
<td>The experimental results show that these immigrants and memory-based GAs can quickly adapt to the network topology changes and produce high-quality solutions.</td>
</tr>
<tr>
<td>4</td>
<td>[16]</td>
<td>Proposes the modified quantum-behaved particle swarm optimization (QPSO) method for QoS multicast routing.</td>
<td>Delay-jitter, bandwidth and cost, respectively</td>
<td>QPSO generates the higher-quality solutions on the multicast routing problems.</td>
<td>The simulation results show the efficiency of the proposed method on QoS the routing problem and its superiority to the methods based on PSO and GA.</td>
</tr>
<tr>
<td>5</td>
<td>[4]</td>
<td>The proposed algorithm uses Ant-like agents to discover and maintain paths in a MANET with dynamic topology.</td>
<td>Latency, end-to-end delay and packet delivery ratio</td>
<td>The proposed hybrid protocol reduces route discovery latency and the end-to-end delay by providing high connectivity without requiring much of the scarce network capacity.</td>
<td>Results shows that Multi agent Ants based Routing Algorithm (MARA) can outperform AODV in terms of end-to-end delay and packet delivery ratio.</td>
</tr>
<tr>
<td>6</td>
<td>[27]</td>
<td>This paper employs Honey Bee Matting Optimization (HBMO) principles to present a new routing protocol, called HBMO-TORA algorithm.</td>
<td>Packet delivery ratio, network life time, system life time and end-to-end delay.</td>
<td>Packet delivery ratio of HBMO-TORA is higher than TORA algorithm. End-to-end delay of HBMO-TORA is lower than TORA. The network life time and system life time of HBMO-TORA are higher than TORA.</td>
<td>The simulation results indicated that the packet delivery ratio, network life time, system life time and end-to-end delay in HBMO-TORA are better than TORA routing protocol.</td>
</tr>
<tr>
<td>7</td>
<td>[36]</td>
<td>Presents an Emergent Ad hoc Routing Algorithm with QoS provision (EARA-QoS).</td>
<td>Packet delivery ratio, Average ETE delay, Average delay jitter and Path optimality</td>
<td>The packet delivery is increased, as well as delay is reduced by using proposed algorithm.</td>
<td>Simulation results show that this algorithm performs equally well under the situations of various nodal mobility, network density and data loads.</td>
</tr>
<tr>
<td>8</td>
<td>[28]</td>
<td>The present work focuses on development of an efficient routing algorithm “Modified Termite algoritms” (MTA) for MANETs.</td>
<td>Throughput, bandwidth, end-to-end delay and routing overheads.</td>
<td>MTA enhances the performance of the network in terms of throughput, and reduction of End-to-end delay and routing overheads.</td>
<td>The stagnation problems can be overcome by fine tuning of the Pheromone concentration based on node stability factor.</td>
</tr>
<tr>
<td>9</td>
<td>[2]</td>
<td>This paper proposes a novel multicast routing in mobile Ad Hoc networks based on particle swarm optimization algorithm.</td>
<td>Speed, bandwidth, delay and power consumption.</td>
<td>Routing algorithm finds optimal path in minimum time, have better performance. The running time of PSO algorithm is smaller than GA algorithm. Then, the PSO algorithm can find optimal multicast tree in shortest time.</td>
<td>The proposed algorithm has better performance and efficiency than GA based algorithms.</td>
</tr>
<tr>
<td>10</td>
<td>[3]</td>
<td>In this paper a genetic algorithm for solving the shortest path routing problem is presented.</td>
<td>Packet delivery and Forwarding factor, packet failure ratio.</td>
<td>The route failure probability is less in genetic Algorithm compared to DSR approach. The delay for Genetic Algorithm is less than DSR.</td>
<td>The proposed algorithm can search the solution space effectively and speedily compared with DSR algorithm. It performs better and effectively even to the changes in the network due to node mobility and topology changes.</td>
</tr>
<tr>
<td>11</td>
<td>[31]</td>
<td>Presents an energy-efficient</td>
<td>End-to-end delay</td>
<td>The proposed algorithm is a source-based</td>
<td>Simulation results show that the proposed</td>
</tr>
<tr>
<td>S. No</td>
<td>Reference</td>
<td>Methodology</td>
<td>Performance Metrics</td>
<td>Parametric Analysis</td>
<td>Conclusion</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>------------</td>
</tr>
<tr>
<td>12</td>
<td>[8]</td>
<td>In this paper we study some PSO and GA algorithms to optimize the MANET routing.</td>
<td>Mobility, overhead, end to end delay and energy awareness</td>
<td>Power consumptions, bandwidth and routing overhead are reduced using proposed algorithm</td>
<td>Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) are more promising in providing loop free, energy-aware, and multi-path routing in mobile ad hoc.</td>
</tr>
<tr>
<td>13</td>
<td>[7]</td>
<td>Designed a new efficient and energy aware multipath routing algorithm based on ACO framework.</td>
<td>Network lifetime and packet loss and average end to end delay</td>
<td>Intelligent version of classical Temporally Ordered Routing Algorithm (TORA) increases network lifetime and decrease packet loss and average end to end delay.</td>
<td>Proposed algorithm decreases number of control packets which reduces routing overhead and utilizes bandwidth properly.</td>
</tr>
<tr>
<td>14</td>
<td>[22]</td>
<td>In this paper, Ant Colony Optimization for finding out best possible paths, along with Genetic Algorithm which helps in giving the globally optimal solution from all the best possible paths which were produced by Ant Colony Optimization is used.</td>
<td>Delay in packet delivery</td>
<td>Proposed algorithm GA-API overcomes the delay in packet delivery by producing the shortest path and also overcomes the problem of communication interruption due to node or link failure by finding multiple paths between pair of source and destination nodes.</td>
<td>GA-API provides satisfactory or optimum solutions, with much less computational effort. This algorithm works well for large, complex problems with greater dimensionality.</td>
</tr>
<tr>
<td>15</td>
<td>[34]</td>
<td>An improved ant colony-based multi-constrained QoS energy-saving routing algorithm (IAMQER) is proposed.</td>
<td>Bandwidth, end-to-end delay, jitter, packet loss ratio, energy consumption</td>
<td>The proposed algorithm improves the performance of network in multi-constrained QoS routing by reducing average energy consumption and improves network packet delivery ratio.</td>
<td>The proposed IAMQER algorithm performs well and effectively.</td>
</tr>
<tr>
<td>16</td>
<td>[12]</td>
<td>Proposed an orientation based ant algorithm (GANTALG) for Routing in MANETs.</td>
<td>Throughput, jitter, path length and packet drop ratio</td>
<td>OANTALG can send more number of data packets than AODV, DSR, and HOPNET. The throughput in GANTALG is more than AODV, DSR and HOPNET. Average Jitter is also reduced.</td>
<td>The results obtained show that the proposed algorithm performs better than the other state of art algorithms.</td>
</tr>
<tr>
<td>17</td>
<td>[20]</td>
<td>Presented a swarming agent based intelligent algorithm using a hybrid Ant Colony Optimization (ACO) Particle Swarm Optimization (PSO) technique to optimize the multicast tree.</td>
<td>Delay, loss rate, Bandwidth and jitter</td>
<td>Algorithm is found to construct the multicast tree patterns more sensibly such that the tree patterns not only satisfy the QoS constraints, but also tries to minimize the tree cost.</td>
<td>The simulation results reveal that the proposed algorithm performs better than the existing algorithms.</td>
</tr>
<tr>
<td>18</td>
<td>[1]</td>
<td>This paper examines Swarm Intelligence based routing protocols, along with a newly proposed bee-inspired routing protocol for providing multi-path routing in wireless ad hoc networks of mobile nodes.</td>
<td>Packet delivery ratio, Control overhead, Average end-to-end Delay, Average throughput</td>
<td>In BeeIP, packet delivery ratio is higher. AODV and DSR are found to have more packet loss than BeeIP. Average throughput is less than DSR and AODV.</td>
<td>The results obtained show that BeeIP generally outperforms the other protocols. Its biggest strength is seen when observing the average end-to-end delay and packet delivery ratio.</td>
</tr>
<tr>
<td>19</td>
<td>[23]</td>
<td>Proposed a niched ant colony optimization with colony guides (NACOg) algorithm to tackle the MinC/DB problem.</td>
<td>bandwidth, end-to-end delay, delay jitter, packet-loss ratio</td>
<td>Maximal end-to-end delay obtained by NACOg is low when compared with end-to-end delay of Genetic and KPP heuristic.</td>
<td>Results shows that the proposed NACOg multicast trees compared to those obtained by genetic algorithm and the KPP heuristic.</td>
</tr>
<tr>
<td>20</td>
<td>[21]</td>
<td>In this work, a hybrid routing intelligent algorithm that has an ant colony optimisation (ACO) algorithm and particle swarm optimisation (PSO) is used to improve the various metrics in MANET routing.</td>
<td>Distance, bandwidth, delay, load for a path and power consumption</td>
<td>The path outcome using the hybrid routing intelligent algorithm (PSO, ACO) has the shortest distance, a minimum delay, low power consumption, and low cost when compared with the individual performance of the ACO algorithm.</td>
<td>This hybrid routing intelligent algorithm has an improved performance when compared with the simple ACO algorithm in terms of delay, power consumption and communication cost.</td>
</tr>
</tbody>
</table>

The above comparison table includes the approaches based on bio-inspired or naturally inspired population based metaheuristic algorithms. From the table it is cleared that the metaheuristic algorithms based on population based approach plays a vital role in improving the efficiency of the routing in Mobile Ad Hoc Networks. Especially, the Ant Colony Optimization (ACO) algorithm [9], [10], Genetic algorithm (GA) [13] and Particle Swarm Optimization (PSO) algorithm [18] have the ability to get combined with the other authors. Nancharaiah and Chandra Mohan evaluated the performance of a hybrid routing intelligent algorithm in 2014. Authors improved the various metrics of MANET using hybrid routing intelligent algorithm which has combined Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) algorithms. The outcome result shows that the performance of hybrid routing intelligent algorithm (ACO, PSO) is higher than the performance of the individual ACO algorithm [21].
Figs. 4 and 5 show the results obtained for the hybrid ACO_PSO algorithms. Power consumption, End to End delay and Communication cost are the different metrics considered in the graphs. While comparing these graphs with the other existing individual ACO and PSO algorithms, it is proved that the hybrid ACO_PSO algorithm shows the efficient result better than the existing individual algorithms. Likewise, the combinations of other algorithms are also efficient than some individual algorithms.

III. CONCLUSION

In this survey paper, the most significantly used bio-inspired metaheuristic algorithms with the population based approach are presented. Among all the bio-inspired metaheuristic algorithms, only some of the algorithms are most commonly used. Those algorithms are Ant Colony Optimization (ACO) algorithm, Particle Swarm Optimization (PSO) algorithm, Genetic algorithm and Artificial Bee Colony (ABC) algorithm. So, that the performance of individual PSO
algorithm and ACO algorithm is studied with an example graph in this paper. From this survey it is proven that the combination of two algorithms provides efficient results better than the individual algorithms. For example, hybrid ACO PSO delivers efficient results when compared with the individual ACO and PSO algorithms in the area of ad hoc networks.

REFERENCES


Mr. C. Rajan received his B.E Degree in Computer Science and engineering from SSN College of engineering at University of Madras. Then he obtained his Master’s degree in Computer Science. He is pursuing Ph.D at Anna University of Technology, Coimbatore. He is currently working as an Assistant Professor in the Department of Information Technology, KSR College of Technology. He has 10 years of teaching experience. He has presented 10 papers in various national and international journals. His research interests Multicasting Networks, Key Management and Network Security.

Mrs. K. Geetha holds a M.E degree in Computer Science and Engineering from K. S. Rangasamy College of technology, affiliated to Anna University of Technology Coimbatore, Tamil Nadu, India in 2010. Now she is pursuing Ph.D at Anna University of Technology, Coimbatore. She is currently
working as an Assistant Professor in the Department of Information Technology, Excel Engineering College. She has 8 years of teaching experience. She has published 3 international journals and presented three papers in the national and international Conferences. She is an active member of ISTE. Her Research interests include Mobile computing, Ad hoc Networks and Network Security.

Miss. C. Rasi Priya holds a B.Tech degree in Information Technology from K.S.Rangasamy College of technology, affiliated to Anna University of Technology Coimbatore, Tamil Nadu, India in 2013. Now she is an M.Tech student of Information Technology department in K.S.Rangasamy College of Technology. She has published 1 international journal and presented two papers in National level Conferences. She is an active member of ISTE. Her Research interests include Mobile computing, Ad hoc Networks and Security.

Dr. R. Sasikala received B.E. degree in Computer Science and Engineering from Bharathiyar University, Coimbatore, Tamil Nadu, India in 1994 and M.E. degree in Computer Science and Engineering from Government College of Technology, Coimbatore, Tamil Nadu, India in 2003. She has completed the Ph.D. degree in Anna University, Chennai in Networking. She has been with K. S. Rangasamy College of Technology, Tamil Nadu, India since 1999, and currently working as a Professor and Heading the Department of Information Technology. She has published 7 papers in the reputed international journals and 6 papers in the national and international conferences. She has coordinated sponsored workshops, seminars in the college. Her current research interest includes Bigdata, Cloud Computing and Sensor networks. She is a life member of ISTE and CSI.