Abstract—Nowadays, the use of renewable energy sources has been increasingly great because of the cost increase and public demand for clean energy sources. One of the fastest growing sources is wind energy. In this paper, Wind Diesel Hybrid System (WDHS) comprising a Diesel Generator (DG), a Wind Turbine Generator (WTG), the Consumer Load, a Battery-based Energy Storage System (BESS), and a Dump Load (DL) is used. Voltage is controlled by Diesel Generator; the frequency is controlled by BESS and DL. The BESS elimination is an efficient way to reduce maintenance cost and increase the dynamic response. Simulation results with graphs for the frequency of Power System, active power, and the battery power are presented for load changes. The controlling parameters are optimized by using Imperialist Competitive Algorithm (ICA). The simulation results for the BESS/no BESS cases are compared. Results show that in no BESS case, the frequency control is more optimal than the BESS case by using ICA.

Keywords—Renewable Energy, Wind Diesel System, Induction Generator, Energy Storage, Imperialist Competitive Algorithm.

I. INTRODUCTION

A Wind Diesel Hybrid System (WDHS) is a system that produces energy from wind generators and diesel generators (DGs) in order to achieve the maximum electrical power [1]. The main goal of power systems is fuel consumption, operating costs of the system, and environmental impacts. If systems are designed that DGs run full time, WDHS is divided into systems with low to medium penetration. If WDHS is able to bypass DGs, WDHS is classified into High penetration of wind. Penetration of systems is defined based on the penetration of wind energy [2] including:

\[
\text{Energy Penetration} = \frac{\text{Wind Turbine Annual Energy Output (kWh)}}{\text{Annual Primary Energy Demand (kWh)}}
\]

(1)

When (1) it is less than 20%, WDHS is defined as having the low penetration rate and when (1) it is between 20% and 50%, WDHS is defined as having the high penetration rate.

Several articles have been proposed to simulate dynamic WDHS and have studied WDHS without energy storage along with some chaos including Wind Turbine Generator (WTG) connection to the DG network. In [3], WDHS with flywheel energy storage variable speed is simulated by hydrostatic transducer. In [4], WDHS with high penetration rate of wind including a DG and a clutch is studied. In [5], Battery-based Energy Storage System (BESS) is studied generally. In [6], BESS has been investigated to increase power output of a wind farm. This paper aims to WDHS simulation and improve dynamic system.

II. WDHS STRUCTURE

Fig. 1 consists of a DG, a WTG, and two operational modes, that is, diesel-only (DO) and wind-diesel (WD). In DG mode, DO is active, and reactive power is needed to supply the loads. In this case, WTG is off, and therefore \(C_t = 0 \). Also, the governor is responsible for speed, DE control, and adjustments of the frequency and voltage settings. In WD case, WTG provides active power. In this case, regulators are responsible to control voltage and frequency, the same as the case of DO (\(C_t = ON \)) [7].

As shown in Fig. 1, WTG stimulates an induction generator (IG) connected directly to an independent network. The mechanical power is:

\[
P_{T-M} = \frac{1}{2} \rho A v^3 C_p
\]

(2)

where \(\rho \) is the air density, \(v \) is the wind speed, \(A \) is the area swept by the turbine blades and \(C_p \) is the power coefficient of blades. \(C_p \) is a function of the Tip Speed Ratio:

\[
TSR = \frac{R \omega_s}{v}
\]

(3)

where \(R \) is blade length and \(\omega_s \) is shaft speed.

The pitch control is not used here, and \(C_p \) is a function of TSR. In addition, changes in the speed range of IG are very
III. THE CONTROL SYSTEM

A distributed control system (DCS) is applied in the power system to control DL and BESS. A DCS [10] includes several CPUs and are connected together by a communication network. As shown in Fig. 1, the DCS consists of three nodes including a sensor node for the measurement of speed of DG shaft NW and two driving shafts of ND and NS. Sensor node of NW includes a Proportional-Integral (PI). Its input is frequency error \(e_f \) \((e_f = f - f_n) \), where \(f_n \) is the power system-rated frequency and \(f \) is the current frequency. Its output is the reference power \(P_{\text{REF}} \). So, \(K_P \) and \(K_I \) are proportional and integral gains, respectively.

\[
P_{\text{REF}} = K_p e_f + K_i \int e_f \, dt \quad (4)
\]

The Integral part of PI increases speed and stability response of the system. The PI proportion part makes BESS and DL increase the system load when frequency is higher than the rated value \((e_f > 0) \). In addition, BESS produces power when frequency is less than the rated value \((e_f < 0) \). This is a kind of speed control which improves system transition. \(N_W \) usually calculates the distributed power between BESS and DL when \(P_{\text{REF}} > 0 \). The reference power to be dump by DL and the reference power to be stored/ retrieved by BESS, Therefore:

\[
P_{\text{REF}} = P_{\text{L-REF}} - P_{\text{D-REF}} \quad (5)
\]

\[
P_{\text{D-REF}} = 0 \text{ if } P_{\text{REF}} < P_{\text{S-N}} \quad (6)
\]

In order to maintain synchrony between DL and BESS actuators when \(P_{\text{REF}} > 0 \), the sensor node NW should communicate with \(P_{\text{S-REF}} \) and \(P_{\text{D-REF}} \) to actuator nodes ND and NS by network. This message is periodic and ensures that both drivers can receive reference at the same time.

IV. IMPERIALIST COMPETITIVE ALGORITHM

Fig. 2 shows the flowchart of the Imperialist Competitive Algorithm (ICA). This algorithm starts by generating a set of candidate random solutions in the search space of the optimization problem. The generated random points are called the initial countries. Countries in this algorithm are the counterpart of chromosomes in GAs and Particles in Particle Swarm Optimization (PSO), and it is an array of values of a candidate solution of optimization problem. This array is given by [10]:

\[
country = [y_1, y_2, y_3, ..., y_{N_{\text{var}}}] \quad (7)
\]

where \(y_i \)'s are the variables and \(N_{\text{var}} \) is the dimension of the optimization problem.

The cost function of the optimization problem determines the power generation of each country. Based on their power, some of the best initial countries (the countries with the least cost function value), become imperialists and start taking control of other countries (called colonies) and form the initial empires [11]. The cost is obtained by:

\[
cost = f(\text{country}) = f(y_1, y_2, y_3, ..., y_{N_{\text{var}}}) \quad (8)
\]

Two main operators of this algorithm are assimilation and revolution. Assimilation makes the colonies of each empire get closer to the imperialist state in the space of sociopolitical characteristics (optimization search space). Revolution brings about sudden random changes in the position of some of the countries in the search space. During assimilation and revolution, a colony might reach a better position and has the chance to take the control of the entire empire and replace the current imperialist state of the empire [11].
Algorithm continues with the mentioned steps (assimilation, revolution, competition) until a stop condition is satisfied.

This algorithm has a high accuracy and high speed; the cost function used in this step includes integral of input error of controllers. The programmed optimization platform has been prepared by using MATLAB. The parameters of the ICA which are used for this model are in Table I.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Of Countries</td>
<td>50</td>
</tr>
<tr>
<td>Number Of Imperialist</td>
<td>6</td>
</tr>
<tr>
<td>Maximum Iteration</td>
<td>20</td>
</tr>
</tbody>
</table>

ICA is used to determine the optimum coefficients of controllers. According to the ICA, K_I and K_P values are as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>K_I</th>
<th>K_P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel Generator</td>
<td>1.4691</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>Dump Load</td>
<td>39.1700</td>
<td>200</td>
</tr>
<tr>
<td>Bess</td>
<td>646.1442</td>
<td>0.5</td>
</tr>
</tbody>
</table>

V. SIMULATION SCHEMATICS

Fig. 3 shows the simulation structure of WDHS by MATLAB. There are some descriptions about some parts such as the IG and the SM, loads, and three-phase breaker in detail.

SM has a nominal power of 300 kVA. It receives the DE mechanical power output of DE block. WTG’s constant speed stall control [12] includes an IG connected directly to network and wind turbine block. WT block includes WT power curves, which define mechanical power in WT shaft as a function of wind speed and speed of WT shaft. WT mechanical power is determined by the speed of WT shaft to be able to calculate the arrival charge to the IG power.

Loads include a main load of 150 kW and a load of 100 kW (both resistive). The 150 kW load represents a medium load of WDHS and a 250 kW load represents the maximum load of WDHS. So, when three-phase switch (3PB) changes from open form to close form, the system load increases to maximum amount suddenly. Medium/maximum loads are used in this paper and are close to the 2/3 of daily load pattern of WDHS [13].

DL consists of eight 3-phase resistance [14] connected with GTO switches in series. Resistance values follow 8-bit binary progression; therefore, the consumption power supplies rated voltage of network by DL. Includes:

$$P_{STEP} = X_{P} - P_{STEP}$$ (9)

Equation (9) means that power can change from 0 to 255, directly.

Voltage level of the battery is determined by the three-phase converter when the battery works in the DC link. Voltage of DC line should be selected more than 10–15% of voltage of inherent DC link in order to calculate oscillations of network, reactive voltage drop of line, and reliability coefficient of performance [15]. DC line voltage is equal to...
the peak of line-to-line voltage. Therefore, DC link voltage level, V_{DC}, is defined as:

$$V_{DC} = 1.10 \pm 1.15 \sqrt{2} V_{LL}$$ \hspace{1cm} (10)

V_{LL} is the line-to-line RMS voltage. If the DC voltage is less than the intrinsic DC line voltage, the diode bridges charge the battery and semiconductor switches discharge them. This causes the flow of reactive power between the network and transducer. Having a unit power factor and removing the resistive losses, converter output voltage range should correspond with (11) to assess the validity level of the selected DC line voltage, where:

$$m \frac{V_{LL}}{2} > \sqrt{\frac{2}{3}} V_{LL}^2 + (wLd)^2$$ \hspace{1cm} (11)

m is Modulation index, w is grid pulsation, L is Inductance of coil binding, i_d is direct current of components. The left side of (10) reflects the fact that PWM converter works in the linear region as an ideal voltage source. Modulation index (m) can be used for sinusoidal modulation and for modulation of the state vector. As state vector modulation has better utilization of DC link, and its digital implementation is easier and has fewer ripple current [16]. Therefore, it is used more in simulation.

In addition, the controlling parameters of DL and DG are determined by Cost function. Fig. 6 shows the cost function by MATLAB.

In this part, response of WDHS for a consumer load of 100 kW and wind speed of 10 m/s is studied. Such sudden wind change does not occur in a real system. WDHS responses are shown by graphs. Variables of the used graphs include the following:

- Frequency system in pu (f_{pu}), active generation of power by the DG and consumption of power by the load (both uncontrollable), manufacture of active power by DG and production/consumption of active power by BESS (both controllable). Power is considered positive for WTG, DG, and BESS if power is produced. Active power is considered positive for load if power is consumed. Figs. 10, 12 and 13 imply on evolutionary process of variables when BESS is on. Figs. 11 and 14 imply on evolutionary process of variables when BESS is off.

Fig. 3 shows the simulation by MATLAB including a DG of 300 kVA capacity and 480 V power, a wind powerhouse with 300 kVA capacity and 480 V power, three main loads, and an adjustable load. Each load enters into the system with intervals.

Fig. 7 shows that in $t = 5$ s, resistive load of 100 kW is connected by closed 3PB as shown in Fig. 3; it is observed in active power curve of load which shows swinging of the load. Pure resistive load causes the swings.

In $t = 10$ s, third resistance load of 50 kW is added to network. As shown in Fig. 4, wind power plant cannot supply total power of load since $t = 10$ s. Consequently, DG should connect with network to supply some power.

As shown in Figs. 8 and 9, control of frequency when energy storage is eliminated is similar to a case that energy storage is not in the system. Whereas dynamic response and behavior of wind power plant is improved when energy storage is eliminated in the system. Therefore, energy storage is not suitable due to losses and the efficiency of the system.
In Fig. 12, by adding loads to system, some changes are created in the battery to control system frequency. In BESS case due to losses, the system frequency is reduced.

Figs. 13 and 14 show the power of DL with and without energy storage. This load is used for frequency regulation of system. Speed of response of DL to changes in output power of loads is fast. This response is the same both with and without energy storage.

VII. CONCLUSION

WDHS component was presented with and without BESS case. In order to obtain the required voltage for battery, a detailed schematic of the Matlab-Simulink model with the calculations was explained. Compared to a non-BESS, applying BESS is not suggested because of the expensive costs, battery loss, and a reduction in the efficiency of the system. Also, it is concluded that the frequency control of system with optimal parameters—when omitting BESS—would stabilize faster.

APPENDIX

TABLE III

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Nominal Apparent Power</td>
<td>275kVA</td>
</tr>
<tr>
<td>The Nominal Line-To-Line Voltage (V_{lin})</td>
<td>480V</td>
</tr>
<tr>
<td>The Nominal Frequency (f_{ref})</td>
<td>60HZ</td>
</tr>
<tr>
<td>The Stator Resistance (r_s)</td>
<td>0.016pu</td>
</tr>
<tr>
<td>The Stator Inductance (L_s)</td>
<td>0.06pu</td>
</tr>
<tr>
<td>The Rotor Resistance (r_r)</td>
<td>0.015pu</td>
</tr>
<tr>
<td>The Rotor Inductance (L_r)</td>
<td>0.06pu</td>
</tr>
<tr>
<td>The Number Of Pole Pairs</td>
<td>2</td>
</tr>
<tr>
<td>The Inertia Constant (H)</td>
<td>2s</td>
</tr>
<tr>
<td>The Friction Factor (B)</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE IV

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Nominal Mechanical Power</td>
<td>275kW</td>
</tr>
<tr>
<td>The Base Wind Speed</td>
<td>10 m/s</td>
</tr>
</tbody>
</table>

TABLE V

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Nominal Apparent Power</td>
<td>300kVA</td>
</tr>
<tr>
<td>The Line-To-Line Voltage</td>
<td>480V</td>
</tr>
</tbody>
</table>
REFERENCES

