Vibration Control of a Functionally Graded Carbon Nanotube-Reinforced Composites Beam Resting on Elastic Foundation

Gholamhossein Khosravi, Mohammad Azadi, Hamidreza Ghezavati

Abstract—In this paper, vibration of a nonlinear composite beam is analyzed and then an active controller is used to control the vibrations of the system. The beam is resting on a Winkler-Pasternak elastic foundation. The composite beam is reinforced by single-walled carbon nanotubes. Using the rule of mixture, the material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are determined. The beam is cantilever and the free end of the beam is under follower force. Piezoelectric layers are attached to the both sides of the beam to control vibrations as sensors and actuators. The governing equations of the FG-CNTRC beam are derived based on Euler-Bernoulli beam theory Lagrange-Rayleigh-Ritz method. The simulation results are presented and the effects of some parameters on stability of the beam are analyzed.

Keywords—Carbon nanotubes, vibration control, piezoelectric layers, elastic foundation.

I. INTRODUCTION

THE carbon nanotubes (CNTs) have been used to reinforce structures [1]. Unlike the carbon fiber-reinforced composites, carbon nanotube-reinforced composites (CNTRCs) can only contain a low percentage of CNTs (2–5% by weight) [2]. The concept of the functionally graded (FG) has been applied to CNTRCs by Shen [3]. Ke et al. studied free vibration of FG-CNTRC Timoshenko beam [4]. They found that linear frequencies of FG-CNTRC beams with symmetric CNT distribution are bigger than asymmetric ones. This research then was extended by Rafiee et al. to FG-CNTRC Euler-Bernoulli beams with piezo electric layers [5].

Yas and Heshmati presented free vibrations and buckling analysis of CNT-reinforced composite Timoshenko beams on elastic foundation [6]. Nowadays, because of destroying effects of vibration on structures, vibration control of structures is one of favorite subjects for researchers. Using finite element method, Mahiedined and Ouali formulated a beam with attached piezoelectric layers [7]. They used Kirchhoff first order theory for formulation and calculation of lateral strains. Li et al. [8] analyzed free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment. Vibration analysis of nanotube-reinforced composite beams resting on elastic foundations was done by Shen and Xiang [9]. They studied the impact of thermal environment on the vibration characteristic of the beam. Shen and Xiang [10] extended their studies to work on the impact of thermal environment on cylindrical panels which are resting on elastic foundation. The forced vibration behavior of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) based on the Timoshenko beam theory along with von-Kármán geometric nonlinearity has been studied by Ansari et al. [11]. Azadi et al. studied the active control of a FG beam under follower force with piezoelectric sensors/actuators [12]. Yildirim et al. used an active piezoelectric vibration controller for a Timoshenko beam [13].

In this paper, the nonlinear forced vibration of FG-CNTRC beam resting on elastic foundation is investigated based on Euler–Bernoulli beam theory. And then, it has been controlled by an active controller. To do this, better piezoelectric layers as sensors/actuators are attached to the beam. The cantilever beam is under a follower force from its free end. The material properties of FG-CNTRCs are assumed to be graded in the thickness direction, and are estimated through the rule of mixture. Using Lagrange-Rayleigh-Ritz method and considering Winkler-Pasternak Elastic foundation, the governing equations of the system is derived. Finally, the effect of elastic foundation stiffness, follower force and the vibration controller on stability of the FG-CNTRC beam is investigated.

II. GOVERNING EQUATIONS OF SYSTEM

As it is shown in Fig. 1, Winkler-Pasternak elastic foundation is considered. This beam is under follower force from its free end. Piezoelectric layers are attached to both sides of the beam and work as sensor/actuator.

Fig. 1 FG-CNTRC beam resting on elastic foundation

It is assumed that the CNTRC is made from a mixture of SWCNT and an isotropic matrix. Effective Young module and shear module are calculated as:
\[E_{11} = \eta_1 V_{\text{cnt}}^m E_1 + V_m E_m \]
\[\frac{\eta_2}{E_{22}} = \frac{V_{\text{cnt}}}{E_{22}^m} + \frac{V_m}{E_m} \]
\[\frac{\eta_3}{G_{12}} = \frac{V_{\text{cnt}}}{G_{12}^m} + \frac{V_m}{G_m} \]

where \(E_{11}, E_{22} \) and \(G_{12} \) are Young’s modulus and shear modulus respectively, of CNT, \(E_m \) and \(G_m \) are the corresponding properties for the isotropic matrix; \(\eta_j (j = 1, 2, 3) \) is the CNT efficiency parameter accounting for the scale-dependent material properties. \(V_{\text{cnt}} \) and \(V_m \) are the volume fractions for CNT and matrix and are related by:

\[V_{\text{cnt}} + V_m = 1 \tag{2} \]

Fig. 2 Geometry of CNTs’ distribution in the thickness direction of X-form beam

The volume fraction of CNT \(V_{\text{cnt}} \) varies linearly along the thickness. Relation for \(V_{\text{cnt}} \) and its related geometry (Fig. 2) are shown below:

\[X - Beam : V_{\text{cnt}} = 4 \frac{x}{h} V_{\text{cnt}}^* \tag{3} \]

\[V_{\text{cnt}}^* = \frac{\gamma_{\text{cnt}}}{\gamma_{\text{cnt}}} \left(\frac{\rho_{\text{cnt}}}{\rho_m} \right) - \left(\frac{\rho_{\text{cnt}}}{\rho_m} \right) \gamma_{\text{cnt}} \tag{4} \]

where \(\gamma_{\text{cnt}} \) is the mass fraction of CNT, and \(\rho_{\text{cnt}} \) and \(\rho_m \) are the densities of CNTs and matrix, respectively. Similarly, Poisson’s ratio \(\nu \) and mass density \(\rho \) can be calculated by:

\[\nu = V_{\text{cnt}} \nu_{\text{cnt}} + V_m \nu_m \]
\[\rho = V_{\text{cnt}} \rho_{\text{cnt}} + V_m \rho_m \tag{5} \]

where \(\nu_{\text{cnt}} \) and \(\nu_m \) are Poisson’s ratios of CNT and matrix, respectively.

A nonlinear nanotube reinforced composite Euler-Bernoulli beam of thickness \(h \), length \(L \) and width \(b \) is shown in Fig. 1. Piezoelectric layers are attached to top and down side of the beam and act as sensors/actuators where their thickness is \(h_p \), length \(L_p \), width \(b_p \), density \(\rho_p \), elasticity module \(E_p \) and piezoelectric fitness coefficient is \(e_{31} \). Kinetic energy of the system is calculated as:

\[T = T_b + T_p \tag{6} \]

\[T_b = \frac{1}{2} \int \rho (z) \left(\dot{u}^2 + \dot{w}^2 \right) dz \ dx \tag{7} \]

\[T_p = \frac{1}{2} \sum_{n=1}^{P} \int \rho \rho_p w^2 \ dx \]

\[\left[H \left(x - x_1 \right) - H \left(x - x_2 \right) \right] dA_n \ dx \]

\(u(x,t) \) is longitudinal displacement in \(x \) direction and \(w(x,t) \) is transverse displacement in \(z \) direction. Also \(b, p \) and \(f \) indices represent beam, piezoelectric layers and foundation respectively. \(Y \) is number of piezoelectric layers, \(\rho_{p_n} \) equals density of \(n_{th} \) layer, \(x_1 \) and \(x_2 \) are coordinates of first and last point of piezoelectric layer, \((\cdot) \) represents derivative of parameters to time and \(H(x) \) is Heaviside function. And so the potential energy of the system (O):

\[O = O_b + O_p \tag{8} \]

\[O_b = \frac{b}{2} \int \int Q_{11} (-z \frac{\partial \dot{w}}{\partial x} + \frac{1}{2} \frac{\partial \dot{w}}{\partial x})^2 dz \ dx \tag{9} \]

\[+ \left(\frac{1}{2} \int \rho \frac{\partial \dot{w}}{\partial x} \ dx \right) \]

\[O_p = \frac{1}{2} \sum_{n=1}^{P} \int E_p z \left(\frac{\partial \dot{w}}{\partial x} \right)^2 dV \tag{10} \]

\[+ \sum_{n=1}^{P} \int z e_{31} E_z \frac{\partial \dot{w}}{\partial x} dV + \frac{1}{2} \sum_{n=1}^{P} \int E_z dV \]

\[Q_{11}(z) = \frac{E_{11}^m(z)}{1 - \nu^2(z)} \tag{11} \]

where \(P \) is follower force and \(d_n \) represents electrical displacement of couple of piezoelectric layers and calculated as:

\[d_n = e_{p_n} \frac{V_n}{h_{p_n}} \tag{12} \]

\(e_{p_n} \) is dielectric constant of piezoelectric materials that is dependent on \(n_{th} \) layer. According to Lagrange theory, governing equations of system is as:
where Γ is Lagrangian, q is vector in generalized coordinate and Q is the generalized force. Non-conservative work of system equals to:

$$W = P \frac{\partial W(L,t)}{\partial x} (L,t)$$ \hspace{1cm} (14)$$

To calculate the generalized force:

$$\delta W = \mathbf{Q}^T \delta \mathbf{q}$$

Based on Rayleigh-Ritz method to solve the governing equations of system:

$$w(x,t) = \sum_i \phi_i q_i = \Phi^T \mathbf{q}$$ \hspace{1cm} (15)$$

where ϕ_i, q_i, Φ and q are shape function, a time dependent function in generalized coordinate, mode shape and generalized coordinate respectively. By replacing (15) into (6)-(14):

$$\mathbf{M} \mathbf{q} + \mathbf{K} \mathbf{q} = \mathbf{F}$$ \hspace{1cm} (16)$$

where \mathbf{F}, $[\mathbf{M}]$, $[\mathbf{K}]$, $\mathbf{v_s}$ and $\mathbf{u_a}$ represent force, mass matrix, stiffness matrix and piezoelectric sensor/actuator voltages. \mathbf{F} involves piezoelectric actuator force (F_a) and the force that elastic foundation enters on the beam (F_f). And also k_L, k_{NL} and k_s are linear stiffness of Winkler foundation, nonlinear stiffness of Winkler foundation and shear stiffness of Pasternak foundation. And matrix of mass equals to:

$$\mathbf{M} = \mathbf{M}_b + \mathbf{M}_p$$ \hspace{1cm} (18)$$

According to similarity of piezoelectric layers’ properties, the amount of \mathbf{K}_b and \mathbf{K}_a is equal to \mathbf{K}_p and it is considered for actuators and sensors respectively.

$$\mathbf{K} = \mathbf{K}_b + \mathbf{K}_p + \mathbf{K}_w$$ \hspace{1cm} (19)$$
\[J_{an} = \int_{a}^{b} z \, dz, \quad J_{in} = \int_{a}^{b} z \, dz \]
(24)

\[K_{\text{P}a1e} = \frac{J_p}{a} K_{\text{P}a1e} \]
(25)

\[K_{\text{P}a1e} \] and \[K_{\text{P}a1e} \] are matrix of piezoelectric patches diagonal capacity:

\[K_{\text{P}a1e} = \sum_{n=1}^{N} e_{ij} P_n P_a p_i^T \, dV \]
(26)

where \(Y \times 1 \) vector, \(p_n \) for all inputs unless \(n \) which is \(1/h_{p_n} \) equals to zero:

\[K_{\text{P}_a} = e_{ij} P_n P_a p_i^T h_{p_n} \]
(27)

where \(I_{Y} h_{p_n} \) is a \(Y \times Y \) unit matrix, Lyapunov controller is employed to control vibrations of the beam and make it stable. This amount is applied voltage to actuators:

\[v_a = -K_a v_s - K_p v_s \]
(28)

where \(K_a \) and \(K_p \) are certain positive matrixes. To prove stability of the controller, Lyapunov parameter

\[V_{\text{Lyapunov}} = \frac{1}{2} q^T M q + \frac{1}{2} q^T K q + \frac{1}{2} K_{\text{P}a1e} K_{\text{P}a1e}^T q \]
(29)

\(K_q \) is certain positive matrix. After deriving Lyapunov function and replacing \(\dot{M} q \) in it and by using (29) and \(\left(\mu \frac{J_s}{J_a} K_p \right) = K_q \) the following relation would be achieved:

\[\dot{V}_{\text{Lyapunov}} = -\mu \frac{J_s}{J_a} K_{\text{P}a1e} K_{\text{P}a1e}^T \dot{q} \]
(30)

\[\mu \frac{J_s}{J_a} K_{\text{P}a1e} K_{\text{P}a1e}^T \dot{q} \] is a certain positive matrix. So, it is proof that derivative of Lyapunov function has negative sign and stability of system to control vibration using of LaSalle constant collection theory is guaranteed.

III. Simulation and Discussion

It is difficult to find an equation that can consider all geometrical and natural conditions of system. So, some shape functions are defined instead of displacement parameter to estimate that parameter [12]. Poly Millet Methacrylate (PMMA) and armchair (10, 10) CNTs are used as matrix and reinforcement respectively. Material properties of this materials and piezoelectric layers are the same as the mentioned paper [12]. The parameters that are used to derive natural frequencies are:

\[P_{cr} = \pi^2 E_m I_m / L^2 \]

\[\omega = \Omega L \sqrt{J_{10} / A_{110}} \]

\[P_{cr} = \pi^2 E_m I_m / L^2 \] is critical buckling force for the composite beam without carbon- nanotubes. \(I_{10} \), \(A_{110} \) and \(I_m \) represent Moment of inertia of that composite beam and \(\omega \) is the natural frequency of homogenous beam. In Table I, dimensionless frequency of studied FG-CNTRC beam is compared with the presented results of Yas and Samadi [6].

<table>
<thead>
<tr>
<th>Table I</th>
<th>Validation of First Dimensionless Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V'_{\text{cr}})</td>
<td>(12%)</td>
</tr>
<tr>
<td>Present</td>
<td>(1.7177)</td>
</tr>
<tr>
<td>FG-X</td>
<td>(1.7177)</td>
</tr>
</tbody>
</table>

In the worse condition maximum of error, comparing with reference is 7%.

Fig. 3 Impact of follower force on dimensionless first frequency

Looking at Fig. 3, increasing the amount of follower force decreases the flutter vibrations capacity and increases the vibration amplitude. Increasing the coefficient of linear and
nonlinear elastic foundation helps the system to show more resistance against external loads and the result is less vibration while increasing the shear vibration stiffness coefficient of elastic foundation induces a reserve trend to the system and even causes the system lead to buckling phenomenon faster than the condition that there is no elastic foundation. In the process of this experiment, the volume fraction in the x-form distribution was considered 12%.

In this experiment, the distribution of CNTs in thickness direction of the composite beam in the X-form, the volume fraction is considered 17% and the value of dimensionless follower force is 10q. Length of the piezoelectric layers with a thickness of 1 mm assumed to be 8 cm. as the chat shows vibrations of the beam are shown by red and the controlled vibrations are blue. Here the controller system could converge the beam vibrations to zero. The control system that is designed for this model is Unstable.

![Image](image.png)

Fig. 4 Control of FG-CNTRC beam under follower force

In Table II, the effect of elastic foundation coefficients when volume fraction of CNTs is 12%, on dimensionless parameters, the first three frequencies of system \(\omega = \Omega \sqrt{\frac{I_{10}^0}{A_{10}^0}} \) for one mode of distribution of CNTs (X-From) in the thickness direction of the beam is displayed. Three different cases for elastic foundation coefficients were raised to be shown. As the numbers show existence of linear and nonlinear elastic stiffness coefficients, increases systematic frequencies while adding the shear stiffness coefficient decreases systematic frequencies. It shows that linear and nonlinear elastic stiffness coefficients increase the system vibration capacity.

IV. CONCLUSION

In this paper vibration characteristic of a FG-CNTRC beam resting on elastic foundation has been analyzed and then controlled by an active controller. The effect of elastic foundation stiffness, follower force and the vibration controller on stability of the FG-CNTRC beam is investigated. The results of this study show that increasing of follower force increases the stresses of the system and decreases frequencies of the system. The other parameter that has effect on the system vibration is elastic foundation. By adding elastic foundation to the system increases resistance of the system against external loads totally and frequencies will increase too. The controlling system works well and converged vibration amplitudes to zero.

REFERENCES

