Preparation and Characterization of CuFe$_2$O$_4$/TiO$_2$ Photocatalyst for the Conversion of CO$_2$ into Methanol under Visible Light

Md. Maksudur Rahman Khan, M. Rahim Uddin, Hamidah Abdullah, Kaykobad Md. Rezaul Karim, Abu Yousuf, Chin Kui Cheng, Huei Ruey Ong

Abstract—A systematic study was conducted to explore the photocatalytic reduction of carbon dioxide (CO$_2$) into methanol on TiO$_2$ loaded copper ferrite (CuFe$_2$O$_4$) photocatalyst under visible light irradiation. The phases and crystallite size of the photocatalysts were characterized by X-ray diffraction (XRD) and it indicates CuFe$_2$O$_4$ as tetragonal phase incorporation with anatase TiO$_2$ in CuFe$_2$O$_4$/TiO$_2$ hetero-structure. The XRD results confirmed the formation of spinel type tetragonal CuFe$_2$O$_4$ phases along with predominantly anatase phase of TiO$_2$ in the CuFe$_2$O$_4$/TiO$_2$ hetero-structure. UV-Vis absorption spectrum suggested the formation of the hetero-junction with relatively lower band gap than that of TiO$_2$. Photoluminescence (PL) technique was used to study the electron-hole (e$^-$/h$^+$) recombination process. PL spectra analysis confirmed the slow-down of the recombination of electron-hole (e$^-$/h$^+$) pairs in the CuFe$_2$O$_4$/TiO$_2$ hetero-structure. The photocatalytic performance of CuFe$_2$O$_4$/TiO$_2$ was evaluated based on the methanol yield with varying amount of TiO$_2$ over CuFe$_2$O$_4$ (0.5:1, 1:1, and 2:1) and changing light intensity. The mechanism of the photocatalysis was proposed based on the fact that the predominant species of CO$_2$ in aqueous phase were dissolved CO$_2$ and HCO$_3^-$ at pH ~5.9. It was evident that the CuFe$_2$O$_4$ could harvest the electrons under visible light irradiation, which could further be injected to the conduction band of TiO$_2$ to increase the life time of the electron and facilitating the reactions of CO$_2$ to methanol. The developed catalyst showed good recycle ability up to four cycles where the loss of activity was ~25%. Methanol was observed as the main product over CuFe$_2$O$_4$, but loading with TiO$_2$ remarkably increased the methanol yield. Methanol yield over CuFe$_2$O$_4$/TiO$_2$ was found to be about three times higher (651 μmol/g-cat L) than that of CuFe$_2$O$_4$ photocatalyst. This occurs because the energy of the band excited electrons lies above the redox potentials of the reaction products CO$_2$/CH$_3$OH.

Keywords—Photocatalysis, CuFe$_2$O$_4$/TiO$_2$, band-gap energy, methanol.

COMBUSTION of fossil fuel can be considered as the main power source for the growth of human civilization and no wonder, fossil fuel is the largest single source of energy consumed by the world’s population. The reliance on fossil fuel for rapid industrialization cause unavoidable CO$_2$ emission [1]-[3]. CO$_2$ is the most concentrated greenhouse gas emitted by many industries, e.g. urea fertilizer industry, produce 100% CO$_2$ in flue gas [4], [5]. Therefore, carbon capture, storage and conversion into hydrocarbon technologies are drawing the attention of many researchers [3], [6].

Numerous methods have been explored to convert CO$_2$, such as hydrothermal, electrochemical and photochemical reduction of CO$_2$ to hydrocarbons. Hydrothermal reduction process requires high temperature (~450$^\circ$C) and pressure (25 MPa), hence it is energy intensive and costly [5], [7], [8]. The reduction of CO$_2$ by photocatalysts is one of the most promising methods for CO$_2$ reduction into methanol, especially under visible light irradiation [9-12].

Titanium dioxide (TiO$_2$), the most commonly used photocatalyst, is active under UV-light due to its large bandgap (~3.2 eV). Various methods have been studied to reduce the bandgap if TiO$_2$, such as doping with metals, non-metals and composite semiconductors on to TiO$_2$ [2], [7], [13]. The pre-requisites for the visible light active catalyst for the selective conversion of CO$_2$ to methanol under visible light are as follows: increased visible light absorption by decreasing the band gap [1], efficient charge separation and most importantly, the shift of the conduction band (CB) to more negative regions than the standard potentials for CO$_2$ reduction reactions [1], [8], [14]. The following reactions occur in the aqueous phase during CO$_2$ reduction to methanol [3], [9], [11]:

\[
\text{H}_2\text{O} + 0.5\text{CO}_2 + 2\text{H}^+ + 2e^- \rightarrow \text{H}_2 + \text{CH}_3\text{OH} + \text{H}_2\text{O} \quad \text{E}^{\text{ox}} = 1.23\text{V} \quad (1)
\]

\[
\text{H}^+ + e^- \rightarrow \frac{1}{2}\text{H}_2 \quad \text{E}^{\text{ox}} = 0.0\text{V} \quad (2)
\]

\[
\text{CO}_2 + 6\text{H}^+ + 6e^- \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O} \quad \text{E}^{\text{ox}} = -0.39\text{V} \quad (3)
\]

So far, a variety of semiconductors including TiO$_2$ loaded composite and others catalysts like CdS/TiO$_2$, FeTiO$_3$/TiO$_2$, CuO–TiO$_2$, Pt–TiO$_2$/MgO, TiO$_2$/ZnO, AgBr/TiO$_2$, Cu$_2$TiO$_3$, RuO$_2$/TiO$_2$ etc. have been reported as photocatalysts and these...
types of hetero-junction helps to enhance the CO₂ reduction in aqueous phase reaction [7], [9], [15]-[17].

In our recent work, we demonstrated that the nanostructured CuFe₂O₄ and its further combination with TiO₂ can efficiently reduce CO₂ to methanol under visible light [18]. However, the effect of TiO₂ loading in the CuFe₂O₄/TiO₂ light intensity and catalyst loading on methanol yield has never been reported. In this study, CuFe₂O₄/TiO₂ photocatalysts were synthesized with different CuFe₂O₄/TiO₂ ratio and their photocatalytic activity for CO₂ reduction under visible light was evaluated. The recyclability of the catalysts has also been investigated.

II. EXPERIMENTAL PROCEDURE

A. Materials

Copper nitrate, Cu(NO₃)₂·3H₂O (99%), iron nitrate, Fe(NO₃)₃·9H₂O (99%), Nitric acid, HNO₃ (65%), KOH, Agar, commercial TiO₂, KOH, and NaNO₂ were of analytical grade (R&M Marketing, Essex, UK) and used without further purification.

B. Catalyst Synthesis

CuFe₂O₄ photocatalyst was prepared using sol-gel method with slight modification of reaction conditions reported by [1]. For the preparation of CuFe₂O₄ catalyst, required amount of Cu(NO₃)₂·3H₂O and Fe(NO₃)₃·9H₂O were dissolved in 400 mL of water which contained HNO₃ (2M) and 4 g agar, and the solution was retained for 3 h under continuous stirring at room temperature. Thereafter, the temperature was raised to 90 °C and stirred for ~3 h, where a green gel was obtained. The gel was dried at 130 °C under vacuum for 24 h and grinded in a mortar. The powder was calcined at 900 °C with a heating rate of 10 °C/min for 14 h as recommended by [1], [8], [19]. To prepare CuFe₂O₄/TiO₂ photocatalyst, CuFe₂O₄ was dispersed in 50 mL distilled water using ultrasonic bath (Brand: Elmasonic S; Model: S10/S10H) and thereafter required amount of commercial TiO₂ was added. The ultrasonication was continued for another 1 h. In further, the suspension was dried overnight at 100 °C in an oven. Afterward, the mixture was grinded and calcined at 700 °C for 3 h in tubular furnace under N₂ gas atmosphere.

C. Instrumentations

The XRD patterns of the powders were obtained at room temperature using Rigaku MiniFlex II at Bragg angle of 20 = 3-80° with a scan step of 0.02°. The measurements were performed at 30 kV and 15 mA using Cu–Kα emission and a nickel filter. The crystallite size of the prepared nanocomposite was also determined from the XRD spectra and the size was calculated by using the Scherrer formula [20]:

\[D = \frac{K\lambda}{B\cos\theta} \]

(4)

where, D is the coherent scattering length (crystallite size), K is a constant related to crystallite shape whose value is approximately 0.9 [20], λ is the X-ray wavelength of Cu–Kα radiation source = 0.15418 nm and B (in rad) is the full width at half-maximum (FWHM) of the peak, determined by Gaussian fitting. The morphologies of the prepared photocatalysts were observed by field emission scanning electron microscope (FE-SEM: model JEOJ LSM-5410LV, Japan). Energy dispersive X-ray spectrometer (EDX) (5.0 kV) in connection with SEM was used to identify and analyze the elemental composition of photocatalysts. EDX patterns were also obtained using a JEOJ LSM-7600, USA. UV–Vis absorption spectra of the samples were obtained by employing Shimadzu UV 2600 UV-Vis-NIR spectrophotometer. The N₂ adsorption–desorption experiments were conducted at 77 K in (Micromeritics ASAP 2020) Specific surface area (SBET) of monolayer coverage was determined using Brunauer–Emmett–Teller (BET) method. Finally, the recombination rate of the photogenerated electron–hole pairs (e⁻/h⁺) was estimated using Perkin Elmer LS 55 Luminescence spectrophotometer. The catalysts are separated by centrifuging at 10000 rpm for 5 min using eppendorf centrifuge 5810 R.

Methanol in aqueous phase was analyzed by using Agilent gas chromatography (GC) with a flame ionization detector (FID) and the investigation was performed with Shimadzu, column DB-WAX 123-7033 (30 m×0.32 mm, 0.50 μm) and injected with a 7694 E headspace auto sampler.

D. Photocatalytic Activity

The photocatalytic reduction of CO₂ was performed in a continuous-flow reactor system as presented in Fig. 1. A reaction chamber was irradiated with a 500 W xenon lamp (light intensity 240 W/m²) located in the middle of a quartz cool trap. Sodium nitrite solution (2M) was circulated through the quartz trap to cut the UV light in the range of 320 nm and 400 nm [9], [21], [22]. Firstly, 300 mL of distilled water was poured into the reactor and 1.2 g of KOH was dissolved in it to raise the pH to 12. Required amount of catalyst was added into the reactor to maintain the catalyst loading in the range of 0.5-2 g/L. Ultrapure CO₂ gas was bubbled through the solution for at least 1 h to ensure that all dissolved oxygen was eliminated and the pH of the solution was recorded as ~5.9. Thereafter, the lamp was switched on to start the photoreaction. The CO₂ was continuously bubbled throughout the process (8 h). The liquid sample was withdrawn using the vacuum pump and centrifuged at 10000 rpm for 5 min using Eppendorf centrifuge 5810 R. The supernatant was analyzed by GC-FID method.

III. RESULTS AND DISCUSSION

A. XRD Analysis

The XRD patterns of as-prepared CuFe₂O₄ and CuFe₂O₄/TiO₂ photocatalysts are shown in Figs. 2 and 3, respectively. Fig. 2 illustrates that the diffraction patterns of the CuFe₂O₄ can be readily indexed as CuFe₂O₄ that has a good matching with JCPSD database (peak position of 101,112, 200, 202, 211, 220, 321, 224, 400, and 422). The spectra of the sample also indicate the presence of trace
amount of CuO (JCPDS 110, 200) phases. Fig. 3 illustrates the
diffraction peaks of the CuFe₂O₄/TiO₂ photocatalysts that
were calcined at 700°C and it also represents tetragonal,
anatase TiO₂ (JCPDS 111, 102, 021, 023, 620, 502, 532),
and tetragonal CuFe₂O₄ (JCPDS 112, 202, 402, 221, 200, 312,
321, 224, 116 and 422).

Fig. 1 Experimental setup for the photocatalytic conversion of CO₂ into methanol

Fig. 2 XRD of as-prepared CuFe₂O₄

Fig. 3 XRD of as-prepared CuFe₂O₄–TiO₂

According to the Scherrer formula in (4) the crystallite size
of CuFe₂O₄ and CuFe₂O₄/TiO₂ photocatalysts were to be ~59
nm and ~108 nm (TiO₂) evaluated at 2θ = 36.161° (maximum
intense peak). The crystallite size of TiO₂ in prepared
CuFe₂O₄/TiO₂ is higher (~19%) than that of CuFe₂O₄. A
detailed description of phase constitution, lattice constants and
micro structural parameters for as prepared samples is
reported in Table I, as obtained from Rietveld refinement with
a R% of about 16–20%. Together with the presence of
tetragonal CuFe₂O₄ (85.33 wt%), the formation of a small
amount of monoclinic CuO (14.67 wt%) is observed. In both
cases, the lattice constants of CuFe₂O₄ are very similar to
those reported in the crystallographic database (ICDD 340425)
and that of CuO (ICDD 10706830) is reported as a₀ = 4.684,
b₀ = 3.425 and c₀ = 5.129 Å. Anatase phase of TiO₂ of space
group I41/AMDS observed at room temperature diffraction
pattern and crystallographic parameters are very close to
available database (ICDD 211272, a₀ = 3.789 and c₀ = 9.537
Å). Rietveld refinement shows that the as-prepared
nanocomposite is free from more stable rutile TiO₂. It is, in

<table>
<thead>
<tr>
<th>Sample</th>
<th>Phases</th>
<th>Composition (wt%)</th>
<th>symmetry</th>
<th>Space group</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>Crystallite size (nm)</th>
<th>Microstrain</th>
<th>R%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuFe₂O₄</td>
<td>CuFe₂O₄</td>
<td>85.33</td>
<td>Tetragonal</td>
<td>I41/amd:1</td>
<td>5.839</td>
<td></td>
<td></td>
<td>8.656</td>
<td>59</td>
<td>15.37E-4</td>
</tr>
<tr>
<td>CuFe₂O₄</td>
<td>18.06</td>
<td></td>
<td>Tetragonal</td>
<td>I41/amd:1</td>
<td>5.834</td>
<td></td>
<td></td>
<td>8.677</td>
<td>64</td>
<td>12.21E-4</td>
</tr>
<tr>
<td>CuO</td>
<td>18.06</td>
<td></td>
<td>Tetragonal</td>
<td>I41/amd:1</td>
<td>5.834</td>
<td></td>
<td></td>
<td>8.677</td>
<td>64</td>
<td>12.21E-4</td>
</tr>
<tr>
<td>Anatase TiO₂</td>
<td>72.60</td>
<td></td>
<td>Tetragonal</td>
<td>I41/AMDS</td>
<td>3.786</td>
<td></td>
<td></td>
<td>9.514</td>
<td>108</td>
<td>2.21E-4</td>
</tr>
</tbody>
</table>

International Scholarly and Scientific Research & Innovation 10(10) 2016 1275 ISNI:0000000091950263

World Academy of Science, Engineering and Technology
International Journal of Chemical and Molecular Engineering
Vol:10, No:10, 2016
general, accepted that anatase shows more activity than rutile, in most photocatalytic reaction systems [23], may be due to the fact that the Fermi level of anatase is higher than that of rutile and slow recombination of e− and h+ [24].

B. UV-Vis Spectroscopy

The UV–Vis spectroscopy of the as-prepared CuFe2O4 and CuFe2O4/TiO2 and commercial TiO2 in the wavelength range of 250-1400 nm has been presented in Fig. 4 (a). Fig. 4 (a) shows transparency for wavelengths above 400, 480, 1010 nm which represents the visible light activity of the prepared photocatalysts. Plotting (αhv)2 versus hv (Catalysts are presented as a direct transition) [25] based on the spectral response from Fig. 4 (a) gives the extrapolated intercept corresponding to the band gap energy value as shown in Fig. 4 (b), and Plotting (αhv)1/2 versus hv (indirect transition) as shown in Fig. 4 (c). Figs. 4 (b) and (c) depict the band-gap of commercial TiO2 (3.1 eV), CuFe2O4/TiO2 (2.61 eV), and CuFe2O4 (1.24 eV). The optical band gap energy of CuFe2O4/TiO2 is 2.61 eV which also display lower value compared to TiO2 (3.1 eV). Kezzim et al. [1] reported the band gap of CuFe2O4 synthesized via sol–gel approach as 1.42 eV. Ahmed et al. [26] studied the suitable UV–visible light region (300-430 nm) for photocatalytic reduction of CO2 into methanol. When a metal or composite is doped or loaded to the other composite, the previous band-gap was shifted to a new band-gap [2], [7]. In our prepared CuFe2O4/TiO2 catalyst, the absorption edge of TiO2 shifted from 400 to 480 nm due to the loading effect. A small shoulder exists at 350 to 367 nm as shown in Fig. 4 (a) for the CuFe2O4/TiO2 photocatalyst, it may be due to the interaction of TiO2 with CuFe2O4. The band gap of the recycled (after 4-time use, e.g. 4th recycle) catalyst was found to be shifted towards higher band gap (2.71 eV), might be due to the leaching of CuO or CuFe2O4 from the heterojunction, which could not be confirmed in the present paper.

C. PL Spectroscopy

The electron–hole (e−/h+) recombination process studied by PL spectroscopy. Fig. 5 compares PL spectra for CuFe2O4 and CuFe2O4/TiO2, commercial TiO2 and recycled CuFe2O4/TiO2 catalyst (after four cycle of recycling process). CuFe2O4/TiO2 photocatalyst exhibited a wide and strong PL signals in the range of 400-480 nm with the excited wavelength of 350 nm. The spectral peak located at 421 and 475 nm corresponds to anatase TiO2 and effect of TiO2 loading on CuFe2O4 while two peaks at 450 and 466 nm are attributed to the transition from the oxygen vacancies with two and one trapped electron to the CuFe2O4 conduction band (CB), respectively. However, TiO2 band is more intense while the CuFe2O4/TiO2 band intensities gradually weakened suggesting the lowering of e−/h+ recombination due to the CuFe2O4 loading with TiO2. Furthermore, the recycled (after 4-time use, e.g. 4th recycle)
catalyst showed low PL intensity, but needed longer wavelength (very close to the TiO₂ spectrum), suggesting the loss of visible light active CuFe₂O₄ or CuO from the system. The result is consistent with the UV-Vis finding.

D. Adsorption Isotherms, Surface Area (BET) and EDX Analysis

BET and EDX analysis of CuFe₂O₄ and CuFe₂O₄/TiO₂ is presented in Table II. The BET method is widely used for measuring the specific surface area of catalyst as presented in Fig. 6. Fig. 6 exhibits the N₂ adsorption–desorption isotherms of CuFe₂O₄ and CuFe₂O₄/TiO₂ photocatalysts. The mesoporous structure of CuFe₂O₄ and CuFe₂O₄/TiO₂ samples without surface directing agents were evidently due to the controlled hydrolysis process. Furthermore, the initial part of the isotherms (at low P/P₀) is related to the monolayer–multilayer adsorption on the internal surface. However, at higher P/P₀, the steep increment in the adsorption volume is attributed to the capillary condensation as the pores were saturated with liquid. This finding indicated that capillary condensation of nitrogen was occurred within the pores of the catalyst. The obtained BET surface area, average pore diameter and specific pore volume of CuFe₂O₄ were 1.49 m²g⁻¹, 33.62 Å and, 0.0012 cm³g⁻¹, and the BET surface area, average pore diameter and specific pore volume of CuFe₂O₄/TiO₂ were 1.98 m²g⁻¹, 255.24 Å, and 0.013 cm³g⁻¹, respectively. The low surface area for metal ferrites was also reported in literatures. The BET surface area of NiFe₂O₄ was 2.13 m²g⁻¹ and Co and Mn ferrite BET surface area was 2 m²g⁻¹ [27]-[29].

![Adsorption Isotherms](image)

Fig. 6 N₂ adsorption–desorption isotherm of CuFe₂O₄ and CuFe₂O₄/TiO₂ photocatalyst

TABLE II

<table>
<thead>
<tr>
<th>Sample</th>
<th>Surface area (m²g⁻¹)</th>
<th>Average pore diameter (Å)</th>
<th>Specific pore volume (cm³g⁻¹)</th>
<th>Surface elemental contents (wt.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuFe₂O₄</td>
<td>1.48</td>
<td>33.62</td>
<td>0.0012</td>
<td>Cu 57 Fe 21 O 22 Ti -</td>
</tr>
<tr>
<td>CuFe₂O₄/TiO₂ (1:1 wt. ratio)</td>
<td>1.98</td>
<td>255.24</td>
<td>0.013</td>
<td>Cu 15.1 Fe 48.2 O 30.5 Ti 6.2</td>
</tr>
</tbody>
</table>

* Surface elemental contents calculated using EDX

E. FE-SEM Analysis

Figs. 7 (a) and (b) portray the FE-SEM micrographs of CuFe₂O₄ and CuFe₂O₄/TiO₂ photocatalysts. The uniform shape of the mesoporous spherical particles can be attributed to the CuFe₂O₄ crystal growth due to controlled gel formation process. EDX analysis confirmed the appearance of peaks of Cu, Fe, O, Ti in the CuFe₂O₄ and TiO₂ loaded CuFe₂O₄ sample.

![FE-SEM micrographs](image)

(a)
F. Photocatalytic Reduction of CO$_2$: Effect of TiO$_2$ Loading on CuFe$_2$O$_4$

The photocatalytic reduction of CO$_2$ and successive formation of methanol was investigated over a period of 8 h irradiation on CuFe$_2$O$_4$/TiO$_2$ and CuFe$_2$O$_4$ photocatalysts as shown in Fig. 8. The experimental result showed the methanol as the main product in the liquid phase. Hydrogen, CO, formaldehyde, ethane and ethylene could also be formed according to the reports in the literature [6], [9], [26], but they were undetectable in our case. Fig. 8 depicts that the highest methanol yield (651 μmol/g cat L) was obtained for CuFe$_2$O$_4$/TiO$_2$ (1:1 weight ratio) photocatalyst, compared to that of (220 μmol/g cat) CuFe$_2$O$_4$ after 8 h of reaction. A slight decline of the catalyst activity after 6 h of reaction, both catalysts indicated the unavailability of the active sites or the deactivation of the catalyst. The yield of methanol with CuFe$_2$O$_4$/TiO$_2$ for the photocatalytic reduction of CO$_2$ under visible light was significantly higher than the results presented in literature [6].

G. Photocatalytic Reduction of CO$_2$: Effect of Catalyst Loading for CO$_2$ Reduction

To study the effect of catalyst loading on methanol yield, the catalyst loading was varied from 0.5 to 2 g/L. The results are presented in Fig. 9. From the figure, the methanol yield was increased with the increase in catalyst loading. The highest yield of methanol for CuFe$_2$O$_4$/TiO$_2$ photocatalyst was 695 μmol/g cat L at 2 g/L catalyst loading after 6 h irradiation. In comparison with the 1 g/L catalyst loading the methanol yield was increased only 6.8% by doubling the catalyst amount into the solution. According to the figure, in case of increasing the catalyst loading from 0.5 g/L to 1 g/L, methanol production was drastically raised to around 70% but further increasing of catalyst loading yield was not significant might be due to the exhaustion of the active sites. The result is consistent with the literature finding where 1 g/L showed the optimum methanol yield [7], [22], [30].

H. Photocatalytic Reduction of CO$_2$: Effect of Light Intensity for CO$_2$ Reduction

The effect of visible light intensity on photocatalytic CO$_2$ reduction process is presented in Fig. 10. Fig. 10 illustrates the direct effect of the light intensity on photocatalytic reduction of CO$_2$ into methanol for 8 h irradiation period. After increasing the light intensity methanol yield was significantly increased about 14% (at 8 h irradiation). The light intensity of 249 W/m2 was chosen as optimum, as further increase in light intensity could not increase the methanol yield.
I. Recycling of Catalyst for CO₂ Reduction

The catalyst recycling for four different cycles was performed and presented at Fig. 11. After each run, the whole reaction mixture was centrifuged, before reuse in the second reaction cycle; the recovered catalyst was dried over night at 100 °C and subsequently used for new cycle under the optimum operating conditions. It was observed that the catalyst activity gradually decreased during 8 h irradiation (Fig. 11) and the activity was decreased about 25.6% after four cycles of operation compare to the first cycle. The UV-visible and PL data suggested the loss of active phase in the recycled catalysts might be the reason for the reduction of the activity.

J. Mechanism of Methanol Formation

The mechanism of methanol formation over prepared CuFe₂O₄ and CuFe₂O₄/TiO₂ photocatalysts are shown in Fig. 12. At pH ~ 5.9, CO₂ may exist as dissolved CO₂ and HCO₃⁻, but the predominant species at low pH are the dissolved CO₂ and HCO₃⁻ [31].

As shown in Fig. 12, the reduction potential of the possible reactions of these species of CO₂ falls in between the VB and CB of both CuFe₂O₄ and CuFe₂O₄/TiO₂ suggesting that the reaction can occur on both photocatalysts [9], [32]. Comparing the band gap, CuFe₂O₄ (1.24 eV) is more visible light active than the TiO₂ (3.1 eV). According to the standard reaction potential (E⁰ox=-0.39 V), the of methanol formation alone on CuFe₂O₄ is low due to the large difference between the potential of the CB (-1.03 V) of CuFe₂O₄ and the redox couple (-0.38 V). Under visible light, excited e⁻ could move from VB to CB of CuFe₂O₄ whereas CB (-1.03 V) edge of CuFe₂O₄ is higher than that of the TiO₂ CB (-0.97 V), the excited e⁻ can easily transferred to the CB of TiO₂ in CuFe₂O₄/TiO₂ hetero-structure where the CO₂ reduction can take place. The hetero-structure should increase the e⁻ life time by suppressing the e⁻/h⁺ recombination. The reduction of the e⁻/h⁺ recombination rate in the hetero-structure was evident from Fig. 5. Therefore, CuFe₂O₄/TiO₂ hetero-structure can promote the charge pair separation and prolong the recombination of e⁻/h⁺ pairs resulting in higher CO₂ reduction efficiency.

IV. CONCLUSIONS

In summary, significant enhancement of the photocatalytic reduction of CO₂ under visible light irradiation was observed when TiO₂ was deposited on CuFe₂O₄. The catalyst composition and the reaction parameters were studied for methanol production and optimum TiO₂/CuFe₂O₄ ratio, catalysts loading and light intensity were found as 1/1, 1 gL⁻¹ and 240 Wm⁻² respectively. The XRD patterns of CuFe₂O₄ and CuFe₂O₄/TiO₂ confirmed their tetragonal structure, and crystallite sizes of ~59 nm (CuFe₂O₄) and ~108 nm (TiO₂), respectively. The modification of CuFe₂O₄ with TiO₂ enhanced its photocatalytic activity by shifting the band-gap of commercial TiO₂ (3.1 eV) into a new band-gap of CuFe₂O₄/TiO₂ (2.61 eV) photocatalyst, enabling the generation of photo electron under visible light. CuFe₂O₄/TiO₂ showed lower e⁻/h⁺ recombination compared to CuFe₂O₄. The
maximum yield of methanol over CuFe$_2$O$_4$ and CuFe$_2$O$_4$/TiO$_2$ photocatalysts under visible light irradiation were 220 and 651 μmol/g cat L, respectively.

ACKNOWLEDGMENT

The authors would like to thank the Malaysian Ministry of Education for Fundamental Research Grant Scheme (RDU150118) and Universiti Malaysia Pahang for funding (GRS140330).

REFERENCES