Possible Protective Effect of Kombucha Tea Ferment on Cadmium Chloride Induced Liver and Kidney Damage in Irradiated Rats

Nashwa Kamel Ibrahim

Abstract—Kombucha Tea Ferment (KT), was given to male albino rats, (1ml/Kg of body weight), via gavages, during 2 weeks before intraperitoneal administration of 3.5 mg/Kg body weight CdCl₂ and/or whole body γ-irradiation with 4Gy, and during 4 weeks after each treatment. Hepatic and nephritic pathological changes included significant increases of serum alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) activities, and creatinine and urea contents with significant decrease in serum total antioxidant capacity (TAC). Increase in oxidative stress markers in liver and kidney tissues expressed by significant increase in malondialdehyde (MDA) and nitric oxide (NO) contents associated to significant depletion in superoxide dismutase (SOD) and catalase (CAT) activities, and reduced glutathione (GSH) content were recorded. KT administration results in recovery of all the pathological changes. It could be concluded that KT might protect liver and kidney from oxidative damage induced by exposure to cadmium and/or γ-irradiation.

Keywords—Cadmium, Kombucha, radiation, rats

I. INTRODUCTION

IONIZING radiation has always been a part of the human environment. Along with natural radioactive sources present in the earth crust and cosmic radiation, exposure to large doses resulting from accidental exposures or from special medical procedures (radiation therapy) also contribute to our continuous exposure to ionizing radiation. Radiation damage, is to a large extent, caused by the overproduction of reactive oxygen species (ROS), including superoxide anion (O₂⁻), hydroxyl radical (·OH), and hydrogen peroxide (H₂O₂), that overwhelm the levels of antioxidants, resulting in oxidative stress and cellular damage. ROS cause damage by reacting with cellular macromolecules such as nucleotides in nucleic acids, polysaturated fatty acids found in cellular membranes, and sulfhydryl bonds in proteins. If this damage is irreparable, then injury, mutagenesis, carcinogenesis, accelerated senescence, and cell death can occur [1]. Efficient defense and repair mechanisms exist in living cells to protect against oxidant species. Among the enzymes involved in antioxidative defense, particularly well documented are the antioxidant properties of the superoxide dismutases (SOD), glutathione peroxidases (GSH-Px), and catalase (CAT). SOD catalyzes the reduction of O₂⁻ to H₂O₂. The majority of H₂O₂ is broken down to oxygen (O₂) and water (H₂O) by CAT. In addition to CAT, GSH-Px can also break down H₂O₂ and also any peroxides that form on lipids within the body [2]. The activity of GSH-Px depends on the presence of adequate amounts of reduced glutathione (GSH).

Humans are subject to exposure to cadmium pollution through contaminated air, food, water, manufactured goods and occupational hazards. Relatively large quantities are found in commercial phosphate fertilizer, thus the increases in soil and plant cadmium contents may lead to increases in dietary cadmium [3, 4]. Cigarettes made from tobacco grown in soil containing cadmium are another major source of cadmium intoxication [5]. Cadmium stimulates free radical production, resulting in oxidative deterioration of lipids, proteins and DNA, and initiating various pathological conditions in humans and animals [6]. Once absorbed, cadmium is rapidly cleared from the blood and concentrates in various tissues mainly in the liver and kidneys causing many metabolic and histological changes, membrane damage, altered gene expression and apoptosis [6, 7, 8].

Kombucha Tea Ferment (KT) is a sour beverage prepared from the fermentation of black tea and sugar with a symbiotic culture of acetic acid bacteria and yeasts such as Bacterium xylulin, Bacterium xylinoides, Bacterium gluconicum, Saccharomyces ludwigii, Saccharomyces apiculatus varieties, Schizosaccharomyces pombe, Actebacter ketogenum, Torula varieties, Pichia fermentans reported to have potential health effects [9]. Fermentation and oxidation processes of Kombucha microorganisms produce a wide range of organic acids, vitamins and enzymes. Research indicated that KT possesses potent anti-stress, hepato-protective, antioxidant and immune- modulating properties [11]. The mechanisms by which KT ferments exerts its protective effect are unclear. Also little is known about the antioxidant activity [12] and the radio-protective properties of KT [13].

So it was of particular interest to investigate whether KT administration to rats would decrease the toxicity associated with oxidative stress and thereby reducing the damage induced by cadmium and/or γ-radiation exposure. Hepatic and nephritic toxicity was assessed by determining serum levels of alanine and aspartate transaminases (ALT, AST), alkaline phosphatase...
(ALP) activities, creatinine, urea contents and serum total antioxidant capacity (TAC). Levels of liver and kidney antioxidants such as superoxide dismutase (SOD) and catalase (CAT) activities, and the content of reduced glutathione (GSH) besides oxidative markers malondialdehyde (MDA) and nitric oxide (NO) contents were measured.

II. MATERIAL AND METHODS

Preparation of Kombucha Tea Ferment (KT)

For the preparation of the medium: One hundred grams (100 g) of sugar was added to one liter (1L) of distilled water, and the solution was boiled for 15 minutes in a sterile conical flask. Six tea bags of black tea powder (Lipton, Egypt) were added to the flask (12 g/L, 1.2%) and allowed to cool to room temperature for one hour. Kombucha culture was kept under aseptic conditions. fermentation was carried out by incubating Kombucha culture in the prepared medium at 28 ± 1°C for 8-10 days. Then, the medium (brew) was centrifuged at 3000 rpm for 30 minutes aseptically and stored in polypropylene vials at -20°C for further use [12].

Cadmium treatment

Cadmium chloride (CdCl₂) was dissolved in saline solution. To induce cadmium toxicity, each animal received a single intraperitoneal dose of CdCl₂ (3.5mg/Kg of body weight) according to Tzirogiannis [14].

Radiation treatment

Irradiation was performed through the use of a Canadian Gamma Cell-40 (137Cs) at the National Center for Radiation Research and Technology, Cairo, Egypt. The dose rate of Gamma cell (0.5 Gy/minute) was calculated according to the Dosimetry Department in our Institute (NCRRT), where 0.5Gy is emitted from the Cesium source/ minute.

Experimental design

Male albino rats weighing (150-200g) purchased from the Egyptian Organization for Biological Product and Vaccines in Cairo, Egypt, were housed in cages under good ventilation and illumination condition and allowed balanced standard diet and water ad-libitum. Animals were divided into 8 groups of 8 rats each. All animal procedures were performed in accordance with the Ethics Committee of the National Research Centre and in accordance with the recommendations for the proper care and use of laboratory animals (NIH publication No. 85–23, revised 1985).

| TABLE I |
| ANIMAL GROUPS AND TREATMENTS |
Groups	Treatments
Control	Rats didn’t receive any treatment
KT	Rats supplemented with Kombucha Tea Ferment by gavages, at a dose of 1ml/Kg of body weight, daily, during 6 weeks.
CdCl₂	Rats injected with 3.5mg CdCl₂/Kg of body weight via intraperitoneal administration (i.p.).
IRR	Rats whole body gamma irradiated with 4Gy administered as one shot dose.
KT + CdCl₂	Rats supplemented with Kombucha Tea Ferment during 2 weeks before CdCl₂ injection and 4 weeks after injection.
KT + IRR	Rats supplemented with Kombucha Tea Ferment during 2 weeks before irradiation and 4 weeks after irradiation.
CdCl₂ + IRR	Rats injected with CdCl₂ and whole body gamma irradiated.
KT + CdCl₂ + IRR	Rats supplemented with Kombucha Tea Ferment during 2 weeks before injection of CdCl₂ and whole body gamma irradiation and 4 weeks after irradiation.

Biochemical analysis

At the end of experimental period rats were sacrificed. Blood samples were collected in sterile heparinized tubes by heart puncture. Liver and kidneys were quickly removed. All chemicals were obtained from Sigma Chemical Co. (St. Louis, MO) USA. The kits used were purchased from Bio-Diagnostic.

The quantitative determination of serum ALT and AST were done using the method of Reitman and Frankle [15]. ALP activity was estimated according to the method of Kind and King [16], TAC was determined using the total antioxidant capacity Kits [17]. Urea and creatinine concentrations were measured using the method of Halled and Cook [18], and Henery [19], respectively. The liver and kidney were homogenate in saline solution. The homogenate was centrifuged at 3000 rpm for 15 min and the supernatant was used for biochemical analysis. The extent of lipid peroxidation was assayed by the measurement of thiobarbituric acid reactive substances (TBARS) according to Yoshioka [20]. Superoxide dismutase (SOD) and catalase (CAT) activities were determined according to Minami and Yoshihara [21], and Aebi [22], respectively. The content of reduced glutathione (GSH) was determined according to Beutler [23]. Nitric oxide concentration was measured by the method of Geng [24].

Statistical analysis

The SPSS 11.0 statistical software package programmed for Windows was used for statistical calculations. Data were analyzed using one way analysis of variance (ANOVA). Post-hoc Duncan test was used to determine significant differences between means. Values were expressed as mean ±SE. (n=8). Differences between means were considered significant at P≤0.05.

III. RESULTS AND DISCUSSION

Exposure of mammals to ionizing radiations, leads to the development of a complex, dose-dependent series of changes, including injury to different organs which cause changes in the structure and function of cellular components, resulting in tissue damage and death. Oxidative stress with subsequent production of reactive oxygen species (ROS) has been postulated as one of the mechanisms of radiation toxicity [25]. Transaminases play an important role in protein and amino acid metabolism. They are found in the cells of almost all body tissues and when diseases or injuries affected these tissues; they are released into blood stream. Also ALP is considered as an enzyme of hepatocytes plasma membrane, thus an increase
in serum ALP activity has been related to damage of the liver cell membranes [26].

In the present study, a significant increase (P < 0.05) in ALP, AST and ALT activities (Table 1), and creatinine and urea levels (Table 2), was recorded in the serum of irradiated rats which might result from radiation-induced cell membrane damage followed by the release of intracellular molecules to the blood stream.

In agreement with this postulation, a significant increase (P < 0.05) in serum TAC was recorded (Table 2). Moreover, a significant increase (P < 0.05) in the level of TBARS (Fig 1) and NO (Fig 2) associated with a significant decrease (P < 0.05) in the activity of SOD (Fig 3) and CAT (Fig 4), and in the content of GSH (Fig 5) in the liver and kidney of irradiated rats.

The elevated level of TBARS might probably result from the interaction of the excess of

\[\text{OH}, \text{ resulting from the radiolysis of water upon exposure to ionizing radiation, with polyunsaturated fatty acids in the phospholipids portion of cellular membranes [1].} \]

The significant decrease (P < 0.05) in the activity of SOD and CAT might be, also, attributed to the excess of ROS, which interacts with the enzyme molecules causing their denaturation and partial inactivation [27]. The depletion in GSH may be due to its reaction with free radicals resulting in the formation of thyl radicals that associate to produce oxidized glutathione (GSSG). GSH can, also, react with peroxynitrite anion (ONOO-) to form S-nitrosoglutathione [28].

Exposure to cadmium induces oxidative stress by increasing lipid peroxidation [8, 29] and altering the antioxidant status [7], which results in a loss of membrane functions [30]. Once absorbed, cadmium is rapidly cleared from the blood and concentrates mainly in kidneys [31] and liver [32]. The cellular processes underlying cadmium nephrotoxicity are poorly understood: cadmium reacts with thiol groups and may substitute for zinc in critical metabolic processes [33], but it also causes DNA strand breaks, lipid peroxidation, and generation of oxidatively modified proteins [34, 35].

Cadmium, not being a Fenton metal, does not appear to generate free radicals by itself [34] but it has been shown to produce hydroxyl radicals in the presence of metallothioneins, containing Fenton metals [36]. This suggests that Cd-mediated production of ROS takes place as a consequence of Cd-induced displacement of endogenous redox active metals (Fe, Cu) and subsequent damage to critical organelles (e.g., mitochondria) or is due to a decrease of endogenous radical scavengers, such as glutathione and/or protein sulfhydryls [34].

Cadmium hepatotoxicity is probably affected in two ways: on the one hand by occurrence of inflammatory state, on the other hand-by direct toxic action of cadmium on liver cells [4].

In the present study, a significant increase (P < 0.05) in ALP, AST and ALT activities (Table 1), and creatinine and urea levels (Table II), were recorded in the serum of cadmium-treated rats, probably due to the leakage of these molecules from tissues to the blood stream [37].

Table I

<table>
<thead>
<tr>
<th>Animal Groups and Treatments</th>
<th>Aspartate amino transferase (U/L)</th>
<th>Alanine amino transferase (U/L)</th>
<th>Alkaline phosphatase (IU/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>didn’t receive any treatment</td>
<td>±1.66</td>
<td>±2.25</td>
</tr>
<tr>
<td>KT: Supplemented Kombucha</td>
<td>31.60</td>
<td>64.91</td>
<td>113.16</td>
</tr>
<tr>
<td>CdCl₂ Injected CdCl₂</td>
<td>±1.33</td>
<td>±2.52</td>
<td>±5.28</td>
</tr>
<tr>
<td>IRR: irradiated</td>
<td>45.27</td>
<td>74.02</td>
<td>127.35</td>
</tr>
<tr>
<td>KT+CdCl₂: Supplemented</td>
<td>43.00</td>
<td>67.40</td>
<td>121.20</td>
</tr>
<tr>
<td>Kombucha Tea Ferment and</td>
<td>±1.50a</td>
<td>±2.29f</td>
<td>±1.69</td>
</tr>
<tr>
<td>injected CdCl₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KT+IRR: Supplemented</td>
<td>40.65</td>
<td>72.33</td>
<td>118.10</td>
</tr>
<tr>
<td>Kombucha Tea Ferment and</td>
<td>±2.76b</td>
<td>±2.21ab</td>
<td>±1.73</td>
</tr>
<tr>
<td>irradiated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CdCl₂+IRR: Injected</td>
<td>65.43</td>
<td>88.17</td>
<td>140.21</td>
</tr>
<tr>
<td>CdCl₂ and irradiated</td>
<td>±1.22</td>
<td>±4.85abc</td>
<td>±3.34a</td>
</tr>
<tr>
<td>KT+CdCl₂+IRR:</td>
<td>37.66</td>
<td>78.33</td>
<td>122.17</td>
</tr>
<tr>
<td>Supplemented Kombucha Tea</td>
<td>±3.45abcd</td>
<td>±4.42ab</td>
<td>±0.73c</td>
</tr>
<tr>
<td>Ferment and injected CdCl₂</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data are presented as mean ± Standard Error (n=8).

* Significantly different from control. † Significantly different from KT

Antioxidant enzymes CAT, SOD and GPX form the first line of defense against ROS and the decrease in their activities contribute to the oxidative insult on the tissue. SOD detoxifies superoxide radicals and thus provides cytoprotection against free-radical-induced damage. Reports about SOD activity in Cd-treated rats are contradictory, some studies report an increase [38] and some others report a decrease [29] in activity. Researchers demonstrated, also, that SOD activity is strongly inhibited by cadmium, probably by interaction with metal moieties of SOD (Cu, Zn or Mn) and thus reducing its activity [8]. Furthermore, cadmium interacts with enzyme, altering its functional activity [39]. In the present study, cadmium exposure induced a significant decrease (P < 0.05) in the activity of SOD (Fig 3) and CAT (Fig 4), and in the content of GSH (Fig 5) associated to a significant increase (P < 0.05) in the level of TBARS (Fig 1) and NO (Fig 2) in the liver and kidney of rats. In the same line a significant decrease was recorded for serum total antioxidant capacity (TAC) (Table II).

Table II

<table>
<thead>
<tr>
<th>Animal Groups and Treatments</th>
<th>Creatinine (mg/dl)</th>
<th>Urea (mg/dl)</th>
<th>Total Antioxidant capacity (mmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.52</td>
<td>30.00</td>
<td>1.11</td>
</tr>
<tr>
<td>KT: Supplemented Kombucha</td>
<td>±0.06</td>
<td>±2.51</td>
<td>±0.05</td>
</tr>
<tr>
<td>Tea Ferment</td>
<td>0.57</td>
<td>27.87</td>
<td>±1.11</td>
</tr>
<tr>
<td>CdCl₂ Injected CdCl₂</td>
<td>±0.06</td>
<td>±1.54</td>
<td>±0.02</td>
</tr>
</tbody>
</table>

Control: didn’t receive any treatment
It is well documented that free radical scavengers and antioxidants are useful in protecting against oxidative stress toxicity [40]. In the present study, KT ferment administration has ameliorated the increase of ALT, AST and ALP activities as well as the concentration of creatinine and urea in the serum of cadmium treated rats, irradiated rats, as well as, rats subjected to both treatment. Furthermore, oral administration of KT ferment was able to improve the levels of endogenous antioxidants SOD, CAT and GSH in the liver and kidney and to decrease the level of TBARS and NO in liver and kidney tissues of Cd-treated, irradiated and Cd-treated irradiated rats.

Fig. 1. Effect of KT supplementation on liver and kidney malondialdehyde (MDA) concentration in rats injected CdCl2 and/or whole body γ-irradiated. Legends as in Fig. 1.

Fig. 2. Effect of KT supplementation on liver and kidney Superoxide dismutase (SOD) activity in rats injected CdCl2 and/or whole body γ-irradiated. Legends as in Fig. 1.

Fig. 3. Effect of KT treatment on liver and kidney nitric oxide (NO) concentration in rats injected with CdCl2 and/or whole body γ-irradiated. Legends as in Fig. 1.

Fig. 4. Effect of KT treatment on liver and kidney glutathione (GSH) content in rats injected with CdCl2 and/or whole body γ-irradiated. Legends as in Fig. 1.
Fig. 5. Effect of KT treatment on liver and kidney catalase (CAT) activity in rats injected with CdCl2 and/or whole body γ-irradiated. Legends as in Fig.1.

The beneficial effect of KT ferment may be attributed to the presence of vitamin C [41] a potent antioxidant and β-glucan, a bi-product of the kombucha fermented tea, considered a potent free radical scavenger and non-specific stimulator of immune response [13]. Furthermore, the protective mechanism of KT ferment could be related to the presence of hyaluronic acids, which reduce free radical- induced damage [42] and the glucuronic acid, (a powerful antioxidant) that provides a protection from oxidative stress. This acid also enables to bind up toxins (both environmental and metabolic) in liver and kidney, via UDP-glucuronyl transferase and bring them to the excretory system [42, 13].

IV. CONCLUSION

According to the results obtained in the present study, it appears that KT ferment administration to rats would decrease the toxicity associated with oxidative stress and thereby reducing the damage induced by exposure to cadmium and/or radiation.

REFERENCES

